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In previous lectures: causal inference

How can we discover the general causal relations among all
these things?
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In previous lectures: causal inference

The goal is to discover the correct causal model:

Wood

Oxygen Spark
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This week: ‘actual causation’

Assume that we already know the causal model below
Suppose a friend asks you why a fire happened. What do you
tell them?
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Counterfactual theory of causation (e.g. David
Lewis)

e Cis acause of E if:

If C had not happened, E would not have
happened either

* Without the spark, the fire would not have
started -> The spark caused the fire




Problems with the counterfactual approach

* If a meteor had struck Edinburgh this
morning, | would not be giving this lecture

-> | am giving this lecture because no meteor
struck Edinburgh this morning

* If there had been no oxygen in the air, the fire
would not have started

-> The fire started because there was oxygen in
the air




Problems with the counterfactual approach

* The prisoner would be dead, even if
soldier A had not shot

* The prisoner would be dead, even if
soldier B had not shot

e -> None of the soldiers caused the
prisoner’s death!




Saving the counterfactual theory: “invariant”
counterfactual dependence (Jim Woodward)

* To be a cause of E, the link between Cand E
must be invariant

* |.e. Cwould have led to E even if the
background conditions had been different

* The absence of meteor is not an invariant
cause of my giving this lecture




Saving the counterfactual theory: “invariant”
counterfactual dependence (Jim Woodward)

* Oxygen is not an invariant cause of the fire

 Soldier A shooting is an invariant cause of
the prisoner’s death

* Is there experimental evidence for the role
of invariance?




You win a dollar if and only if you
get a green ball from the top box
AND a blue ball from the bottom

box.

Did you win a dollar because you
drew a green ball, or because you
drew a blue ball?

(Morris et al., 2019, PLoS One)



* “Invariance” is still a vague philosophical notion

* What computations actually underlie our sense of causation?



Counterfactual effect size model (auillien, 2020)

* To judge whether C caused E, people:

‘sample’ counterfactuals from the set of possible outcomes

Quantify the average causal effect of C on E across counterfactuals



Sampling counterfactuals

* We assume people sample from a probability distribution S over
possible worlds.

* This distribution is inspired by past research on counterfactual
reasoning.
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Computing an average causal score from this
distribution

» Average causal score: S(E|do(C))- S(E|do(-C))

- This is the causal equivalent of a regression coefficient



Sample counterfactuals by mental simulation

Ball from top box | Ball from bottom Outcome
box
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Here we have:

S(E|do(G))- S(E|do(-G)) =1/4
S(E|do(B))- S(E|do(-B)) =3/4
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Computing an average causal score from this
distribution

* Average causal score: S(E|do(C))- S(E|do(-C))

- This is the causal equivalent of a regression coefficient

» Standardization factor 6. / o,

e Causal effect size: Average causal score * Standardization factor
= [S(E|do(C))- S(E|do(=C))] * (o / o)

- This is the causal equivalent of a correlation coefficient!



Sample counterfactuals by mental simulation

Ball from top box

Ball from bottom
box

Outcome
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Counterfactual effect size model
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New experiment (Quillien & Lucas, 2023)

e Causal judgments should be sensitive to:
* The prior probability of events

* The details of what actually happened

* We predict an interaction between the two



2 colored
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Causation

CESM (Stability parameter: s =.73)
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Did you win
because you
drew the blue
ball? The

ball?
The purple
ball?




Actual World




Causation

CESM (Stability parameter: s =.73)
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Ongoing research questions

e What other factors affect the distribution over counterfactuals?

* Does the way that judges attribute causal responsibility match our
intuitive notion of cause?

* Does our intuitive notion of actual cause shape the way we use other
concepts?

* elc
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Appendix



Testing the model with a real-world example

Which state
caused Biden to
win the election?




Average
human

judgments
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