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Reading

Recommended:

“Inferring causal networks from observations and interventions”
by Steyvers et al. (2003)

https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog2703_6
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog2703_6


Active learning

In our examples so far, including

The direction-judgment task
Categorization
The number game
Causal learning and attribution

We have assumed that people are passive observers.



Active learning

In reality, we tend to take an active role in gathering information:

The direction-judgment task
looking at less-crowded, more-informative parts of the scene

Categorization
choosing examples to get labels for

The number game
asking if specific numbers are part of the concept

Causal learning and attribution
intervening, designing experiments



Active learning

To count as active learning, there must be
1 selection of action or information that
2 serves some learning goal



Active learning

Some active learning is unconscious, e.g., gaze



Active learning

Other kinds are conscious, e.g.,

Calling someone’s bluff
Squeezing a fruit
Hefting an object
Tuning a guitar
Visiting a new restaurant
Internet searches



Formalizing active learning

What does it mean to learn more or less; how can we quantify
learning?



Active learning

Some intuitions:

Learning reduces our uncertainty
Learning changes our beliefs



Reducing uncertainty

How do we define uncertainty?

Suppose we want to know if someone has a particular illness.

If we think it’s p = .5 that they do, we are maximally uncertain.
If we think it’s p = .99 or 0.01, we’re almost certain.
If we think it’s p = 1 or 0, we’re certain.



Reducing uncertainty

Another perspective:

If we are certain, and don’t have much left to learn; we don’t
expect to be surprised.
Let’s define surprisal associated with event x as
log(1/P(x)) = − log(P(x))

What if we formalize uncertainty as expected surprisal:

EP(x)[− log(P(x))]



Reducing uncertainty entropy

Expected surprisal is entropy, the standard way to quantify
uncertainty.

H(X ) = −
∑
x∈X

P(x) log P(x)

(log base 2 → bits; e → “nats”)



Reducing uncertainty entropy

Uncertain:

p = .5→ −(0.5 ∗ log .5 + 0.5 log .5) = 1 bit

Almost certain:

p = .99→ −(.99 ∗ log .99 + .01 log .01) = 0.08 bit

Certain:

p = 1→ −(1 ∗ log 1 + 0 log 0) = 0 bit



Entropy



Entropy

We can think of entropy as the amount of information we expect to
need to be certain about a variable’s value.



Entropy and communication: Example

Alice randomly chooses a candy from an bag with the following mix:

1/2 Anise candies
1/8 Blackcurrant candies
1/8 Chocolate candies
1/8 Dulce de leche candies
1/8 Earl grey candies

Alice wants to tell us what candy she has by blinking (left=0,
right=1).

How many bits (blinks) does she need?



Entropy

Claude Shannon showed that you can expect to need at least

−
∑
x∈X

P(x) log P(x)

bits of information (the entropy).

As noted earlier, any event x has a surprisal (or “information
content”) I(x) = − log P(x)



Entropy

What are our surprisals for Alice?

− log(1/2, 1/8, 1/8, 1/8, 1/8)→ 1, 3, 3, 3, 3

Expected surprisal:

4 ∗ (1/8) ∗ 3 + 1 ∗ (1/2) ∗ 1 = 1.5 + .5 = 2 bits



Entropy

How does this translate to actual communication?

For our candies, Alice could use the following code:

A (p = 1/2) → 0
B (p = 1/8) → 111
C (p = 1/8) → 110
D (p = 1/8) → 101
E (p = 1/8) → 100

Half the time she’ll need 1 bit. Half the time she’ll need 3 bits.



Entropy

That is,

0.5 ∗ 1 + 0.5 ∗ 3 = 2 bits.

on average.

That’s the entropy of the candy-choice random variable – we can’t
do better.



Entropy and active learning

We want to choose an action a that reduces our expected
uncertainty, i.e., our entropy.

This is can expressed as information gain:

H(P(y))− EP(d |a)[H(P(y |a, d))]

y is what we care about
a is our action
d is the unknown result of our action

We’re communicating with the universe, but

we can’t agree a code in advance and
we don’t know how informative its message will be.



Entropy and active learning

How do we maximize our information gain?

H(P(y))− EP(d |a)[H(P(y |a, d))]

We want to minimize

EP(d |a)[H(P(y |a, d))] =
∑
d∈D

P(d |a)H(y |a, d)

That is, we want to pick actions that are probably going to be
informative.



Mutual information and KL divergence

We can also represent MI as:

How much our data are expected to change our posterior
beliefs relative to our priors (as measured by KL divergence).
How much the joint distribution p(X , Y ) differs from the joint
distribution assuming X and Y are independent.



Focusing on uncertain events

We learn little from experiments where we know what the outcome
will be.

What is we focus on experiments where we don’t know what will
happen?

“maximum entropy sampling” – sometimes very useful, but if
misleading if some observations are inherently noisy
sometimes a pitfall for new scientists!



Example: Alien mind reading

Steyvers et al. (2003) asked whether people choose causal
interventions to in learn in an efficient way, using an
information-gain approach.



Example: Alien mind reading

Participants saw 18 kinds of acyclic causal graphs and made causal
structure judgments based on

Observations
Interventions with a brain zapper

The causal relationships were stochastic – aliens could fail to read
other minds.



Example: Alien mind reading

Steyvers tested different active learning models by manipulating the
hypothesis space:

Rational identification: H includes all possible hypotheses
Rational test 1: A working hypothesis versus a null hypothesis
(independence)
Rational test 2: A working hypothesis versus a simpler model
with one fewer edge

Overall:

The rational test models fit people better than identification
Some participants might have been using strategies resembling
rational identification



Some additional observations

Steyvers et al. considered only 3 variables and 18 possible structures.

It seems implausible that people do anything like rational
identification when there are many variables.



Some additional observations

We have been talking about optimizing the information gain from a
single observation – a greedy or myopic policy.

In general, many observations are necessary for learning, and myopic
policies are rarely optimal overall.

Non-myopic optimal policies tend to be so expensive that cognitive
scientists don’t bother with them and call myopic policies optimal.



Myopia

Suppose we want to distinguish between:

U: a 60/40 bias coin, with numbers on opposite sides that have
even sums
V: a 55/45 bias coin, with numbers that have odd sums

We have three action options:

Flip the coin
Look at the head-face serial number
Look at the tail-face serial number

If we only look at the informativeness of individual actions, we will
flip the coins many times.

If we can look at the total informativeness of sets of 2+ actions, our
entropy will be zero after we check both faces.



Example: Wason’s card selection task

We want to know the truth of the rule “If there is a vowel on one
side of a card, there is an even number on the opposite side”, given

One card showing E
One card showing C
One card showing 8
One card Showing 3

What card should we turn over?

Wason: This is a logic puzzle that people failed by choosing 8.

Oaksford and Chater (1994) treated this as an active learning
problem



Example: Wason’s card selection task

How do we gain information about the truth of the rule?

Oaksford and Chater turned to tripe-eating as a more intuitive cover
story:

Rule: “If you eat tripe, you will feel ill.”

Four alternatives:

P: Ask a person who ate tripe if they feel ill: Both outcomes
are informative
!P: Ask a tripe-avoider if they feel ill: Useless
Q: Ask an ill person if they ate tripe: potentially useful,
depending on how common tripe-avoidance and illness are
!Q: Ask a well person if they ate tripe: potentially useful,
depending on how common tripe-avoidance and illness are



Example: Wason’s card selection task

If tripe-eating is common, !Q gives us a chance to decisively answer
the question If tripe-eating is rare, we are likely to learn nothing

If illness is rare, Q could help us substantiate the rule If illness is
rare, Q is less helpful



Example: Wason’s card selection task

Oakford and Chater showed that human behavior is consistent with
“optimal data selection”

aka active learning.



Other models

We have focused on a specific (myopically) rational model. Other
models exist, based on various heuristics, e.g.,

Positive test strategies, which tend to search for evidence
consistent with a hypothesis, at the expense of falsification
Divide-and-conquer strategies, which try to eliminate 50% (or
nearly) of hypotheses
Predictive-coding based approaches, which often resemble
maximum entropy sampling
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