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Readings

Chapter 10.6 of F&L
Chapter 11 of F&L

Optional:

“Bayesian hypothesis testing for psychologists: A tutorial on the
Savage–Dickey method” (2010) by Wagenmakers et al. (Link)

https://www.sciencedirect.com/science/article/pii/S0010028509000826#fn1


Model comparison

We discussed some methods for comparing models using
likelihoods under MLEs, and predictive accuracy



Bayesian model comparison

Last time we discussed approaches to model comparison that don’t
involve marginal likelihoods.

Today we’ll talk about using and approximating marginal likelihoods:

p(y|M) =
∫

θ
p(y|θ, M)p(θ|M)dθ



Bayesian model comparison

P(y|M1)

P(y|M2)

space of datasets y

Evidence / Marginal Likelihood

More complex models spread their probability across more
possible outcomes.
Data y that both models can predict, tends to have higher
marginal likelihood (evidence) under the simpler model.



Bayesian model comparison

Even if we have marginal likelihoods under several models, we can’t
compute P(M|y) (P(M|y) = P(y|M)P(M)

p(y) ):

We would need to sum over all possible models and data
distributions for all of them. Instead:

Given any two models M1 and M1, we can compute the ratio
of their posterior probabilities:

P(M1|y)
P(M2|y) = P(y|M1)P(M1)

P(y|M2)P(M2)

The intractable/unknown normalization terms cancel out, and we
get the relative probabilities of our models.



Bayesian model comparison

There is unlikely to be consensus about P(M); in practice people
use Bayes factors (BF):

P(M1|y)
P(M2|y)︸ ︷︷ ︸

posterior odds

= P(y|M1)
P(y|M2)︸ ︷︷ ︸

BF

· P(M1)
P(M2)︸ ︷︷ ︸
prior odds

BF is the posterior ratio given equal prior probabilities
How strongly you’d have to prefer a model a priori in order to
(still) favor it a posteriori

Lots of opinions about what constitutes a “convincing” Bayes factor



Estimating marginal likelihoods

If we have no closed-form solution for a marginal likelihood, what
can we do?

We have several options, including:
1 Numerical integration
2 Importance sampling
3 Harmonic mean estimation
4 Transdimensional MCMC
5 Savage-Dickey density ratio
6 BIC



Numerical integration

Use a general-purpose algorithm to integrate a function within a
hypercube.

Easy!
Requires bounds on the high-density parts of the space
Intractable in high-dimensional spaces
Risks missing narrow peaks



Numerical integration: Example

We can use standard probability densities to test our methods, since
we know their integral (over data, not parameters) is 1.

Recall that the normal density function is 1√
2πσ2 e− (µ−x)2

2σ2 .

Let’s approximate the integral of e− (µ−x)2

2σ2 , which is the reciprocal of
the normalizing constant 1√

2πσ2 .



Numerical integration: Example

library(cubature)
sd=10;mu=.5
unnGauss <- function(x) {exp(-(mu-x)^2/(2*sd^2))}
adaptIntegrate(unnGauss,c(-1E3),c(1E3))

Result:

$integral
[1] 25.06628

> sqrt(2*pi*sd^2)
[1] 25.06628

(Also see F&L listing 11.1)



Importance sampling

Suppose we have:

p(θ|M) (prior over parameters)
p(y|θ, M) (likelihood)

and we want the marginal likelihood:

p(y|M) =
∫

θ p(y|θ, M)p(θ|M)dθ

as well as expected values for some psychologically interpretable
parameters:

E [θ|y, M]



Importance sampling

We can estimate these quantities using importance sampling :

(omitting M)
1 Draw J samples from a normalized proposal distribution

θ(j) ∼ g(θ)
2 Weight each sample: wj = p(y|θ(j))p(θ(j))

g(θ(j))

3 The expectation of θ is approximately
∑

j wj θ
(j)∑

j wj

4 The marginal likelihood is approximately 1
J

∑
j wj

If the variance of the weights is low, these are probably trustworthy
estimates.



Simple Monte Carlo integration

A special case of importance sampling:
1 Sample from the prior (usually easy)
2 Weight by likelihood: wj = p(y|θ(j))p(θ(j))

p(θ(j)) = p(y|θ(j))

Easy and acceptable if you think the samples will cover high-density
areas of the posterior.

Better: Find a (normalized) proposal function that resembles your
posterior.



Importance sampling

impSamp <- function(targD,ef) {
nSamps = 40000 # The more the better
# Using a student's t distribution, df=1
proposals <- rt(nSamps,1)
pDens <- dt(proposals,1)
unnP <- targD(proposals)
w <- unnP/pDens
print(paste("Expected value of target function:",

sprintf("%2.3f",sum(w*ef(proposals))/sum(w))))
print(paste("Average importance weight:",

sprintf("%2.3f",sum(w)/nSamps)))
}



Gaussian example

sd=.05;mu=5;
unnGauss <- function(x) {exp(-(mu-x)ˆ2/(2*sdˆ2))}
# Real
print(sprintf("Real: %2.3f",sqrt(2*pi*sdˆ2)))
# Numerical
adaptIntegrate(unnGauss,c(-1E3),c(1E3))
# Importance
impSamp(unnGauss,function(x) x)



Gaussian example

sd=.05;mu=5

Real normalization constant Z: 0.125

Cubature estimate of Z: 0 (oops)

Importance sampling:
Estimated mean: 5.000
Avg. importance weight (Z): 0.132 (close)



Importance sampling

In the Gaussian example, we estimated the integral of the
unnormalized Gaussian, by integrating over x .

∫
e− (µ−x)2

2σ2 dx

If we were interested in the marginal likelihood, we would propose µ
and σ (i.e., the parameters θ = [µ, σ]) rather than x . For this we
would need proposal distributions and priors for both parameters.

p(x) =
∫ ∫ 1√

2πσ2
e− (µ−x)2

2σ2 p(µ, σ)dµdσ



Importance sampling

General-purpose Monte Carlo method for approximating
parameter distributions
Can exploit knowledge about high-density regions of posterior
Can compute expectations of functions of params
Requires good proposals

Increasingly so as dimensionality goes up
In these cases, additional tricks may be necessary, e.g.,

annealed importance sampling (link)
Inference trees (link)

https://link.springer.com/article/10.1023/A:1008923215028
https://arxiv.org/abs/1806.09550


Harmonic mean estimation

See “The Harmonic Mean of the Likelihood: Worst Monte Carlo
Method Ever” by Radford Neal. (link)

Excerpts:

“abysmal performance in most real problem[s]”
“the total unsuitability of the harmonic mean estimator should
have been apparent within an hour of its discovery”

Don’t use it.

https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/


Transdimensional MCMC

Use Markov Chain Monte Carlo, combining multiple models
into a single overarching one
Nice in principle
Often difficult / fiddly in practice
Out of scope for this course



Savage-Dickey density ratio

Efficiently compare nested probabilistic models via Bayes Factor
Effectively a better and Bayesian alternative to the
likelihood-ratio test

See recommended reading to learn more



BIC

BIC = −2 · LL + K log(N)

where N is the number of data points and K is the number of
parameters.

Motivated by model comparison per se, not prediction
Approximates the log marginal likelihood under a set of
assumptions
Can be understood as a “minimum description length”
approach
Like AIC, a model-comparison method that boils down to MLE
likelihoods and counting parameters
Like AIC, rests on assumptions; guarantees are asymptotic
Easy!
Safer than AIC if arguing for a more complex model



Identifiability

“Models are unidentifiable when there is no unique mapping between
any possible data pattern and a corresponding set of parameter
estimates”

Strict identifiability is a high bar. More pragmatically:

We should be able to identify parameters we care about
There may be some patterns of data that don’t lead to unique
parameter estimates



Identifiability

If likelihood doesn’t depend strongly on parameters:

Effectively a simpler model
Parameters may not be identifiable in practice



Identifiability

Weak relationships between parameters and data are not all bad:

Less likely to have unwanted flexibility
Sometime we want parameters not to matter

“Nuisance parameters”
Ideally we integrate them out and forget about them



Identifiability

However:

If parameters have important psychological interpretations,
they should be identifiable
Might be a sign that the experiment isn’t adequate



Identifiability

1 Sometimes non-identifiability is inherent in a model; function
from parameters to data isn’t invertible

E.g., using mean response times to infer parameters of a
Weibull distribution

2 Sometimes identification is impossible in practice, because data
are too sparse or noisy



Identifiability

If identifiability is important, we can perform an identifiability
“sanity check” before collecting data.

This is sometimes possible to do mathematically, e.g., Jacobian rank
(See F&L 10.6.1), but simulation-based approaches are often easier
and more useful.



Fake data simulation

1 Define your model(s) and decide on how you will estimate
parameters and compare models

2 Choose some theoretically interesting and plausible
hypothetical models and/or parameters

3 Simulate data for your experiment based on each of those
hypotheticals

Inspect your simulated data. Do they look implausible? If so,
revisit steps 1-2

4 Compare models/fit parameters given your simulated data
Do you come to the right conclusion?
If not, you need to fix your models, methods, and/or
experiments

Can also serve as a power analysis.



Summary

Many methods for approximating the marginal likelihood
Easy cases:

low-dimensional models (numerical integration, importance
sampling)
nested models (Savage-Dickey)
conjugate priors (didn’t discuss)

Hard case: High-dimensional, non-conjugate, non-nested
Well-tuned importance sampling
Annealed importance sampling (out of scope)
Transdimensional MCMC (out of scope)

If you care about parameter identifiability, check!


