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Readings

Chapter 10 of F&L
“Ockham’s razor and Bayesian Analysis” (link)

Recommended:

“A note on the evidence and Bayesian Occam’s razor” (link)

https://www.jstor.org/stable/pdf/29774559.pdf
http://mlg.eng.cam.ac.uk/zoubin/papers/05occam/occam.pdf


Model comparison

We have discussed estimating parameters conditional on a model.

That may be all we need, if we can capture different theories as
parameter choices in a single model
In practice, we may want to compare qualitatively different
models

How do we choose between models?



Criteria for choosing models

We prefer models that are
1 Predictively useful
2 Compatible with our data
3 Likely to be correct, or closer to a correct model

(Understandable, too)



Two models of perceived intensity

M1: Perceived intensity is a 2nd order polynomial function of
physical intensity
M2: Perceived intensity is a 9th order polynomial function of
physical intensity

(Ignore the fact that we could distinguish between these models w/a
single model and suitable priors over parameters)



Two models of perceived intensity

Both models, with MLE fits1:

Which is better?

1Figure 10.1 in F&L.



Two models

Is the complex polynomial going to give good predictions?
p(yK+1|y, M2)

Is the complex polynomial compatible with our data?
p(y|M2)

Is the complex polynomial the right generative model??
p(M2|y)

An important distinction:

A specific 9th order polynomial, versus
some 9th order polynomial.



Predictive accuracy

Is the complex polynomial going to give good predictions?
p(yK+1|y, M2)

Suppose we have a model where all we care about is RMSE, and we
can only obtain point-estimate predictions.

Are there any principles that should guide how we define a model?

Geman et al.2 described bias-variance dilemma, explaining why
“tabula rasa” models are not desirable.

2“Neural networks and the bias-variance dilemma” (1992) by Geman,
Bienentock, and Doursat.



Bias and variance

The expected RMSE of a regression model can be decomposed:
Error due to bias: The difference between the expected
predictions of the model (under all possible data) and the real
mean
Error due to variance: How much the model’s predictions vary
as a function of the specific data it has been given



Bias and variance
Bias and variance are both related to model flexibility3.

3Figure 10.3 in F&L.



Bias and variance

The ideal model:
predictions are matched to reality (in expectation); no
bias-based error
predictions don’t depend on idiosyncrasies of data; no
variance-based error
Extreme version: A perfectly confident and accurate prior

Highly flexible models will do poorly unless large data sets are
available

The lesson: If we have a priori information or constraints, we should
use them!



Two models

For probababilistic models, predictive accuracy relates to other
desiderata:

Is the complex polynomial compatible with our data?
p(y|M2)

Is the complex polynomial the right generative model?
p(M2|y) ∝ p(y|M2)P(M2)

To answer these questions, we need the marginal likelihood of our
data.



Two models

Marginal likelihood:

p(y|M) =
∫

θ
p(y|M, θ)p(θ|M)dθ

̸= p(y|M, θ̂)

Flexible models can accommodate a wide variety of patterns
If those patterns are not present in our data, they’re bad models



Flexibility and overfitting: Likelihood

What if we specify p(θ) at the start, and compute p(y|M)?

That’s an excellent solution, when it’s viable.

However:

We must choose priors carefully
Integrating over θ is often expensive or impossible



Model comparison without marginal likelihood

What if we can’t compute the marginal likelihood, but can compute
likelihoods and MLEs?

Compare predictive accuracy/likelihood on held-out test data



Model comparison without marginal likelihood

What if we don’t have a test set?

E.g., using a data set where alternative models were fitted to
the whole set
Very few data points, s.t., estimating parameters already
difficult

Three common approaches:
1 Likelihood ratios vs χ2

2 AIC and BIC
3 Cross-validation



Nested models and χ2

Suppose M1 is a special case of M2; M2 has additional
parameters and reduces to M1 for specific values of these
parameters. We can say M1 is nested in M2.

Even if the additional parameters of M2 are useless – they just allow
it to fit noise – the negative log likelihood will be slightly lower.



Nested models and likelihood ratios

However, under certain assumptions and as n goes to infinity, that
improvement (times 2) will converge to a χ2 distribution with df
equal to the difference in dimensionality4.

As a result, one can compare the difference in MLE likelihoods to a
χ2 distribution to support or reject the hypothesis that the complex
model is no better.

2 · [log(p(y|θ̂2, M2) − log(p(y|θ̂1, M1)]

Caveats:

If models are nested, there are often nice Bayesian approaches
Null hypothesis significance test

4To learn more, see Wilks’ theorem (link)

https://en.wikipedia.org/wiki/Wilks%27_theorem


AIC

Another approach: “How different is the distribution implied by my
model from the real-world distribution of human behavior?”

How can we quantify this difference?

Kullback-Leibler divergence5:

∫
y

R(y) log R(y)
pM(y)dy

If these distributions are identical, divergence is zero. If the model
assigns zero probability density to events that are possible, it’s ∞.

5Wikipedia article. Don’t call it a distance.

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence


AIC

AIC approximates relative KL divergences of models to target
distribution (e.g., relative probabilities of behaviors):

AIC = 2k − 2 · log(p(y|θMLE ))

AIC penalizes more complex (i.e., flexible) models, because the
same data is used to estimate θMLE and the relative KL
divergence.
Asymptotically agrees with leave-one-out cross-validation.
There are many alternatives, but AIC is simple and popular.



AIC

Caveats:

Approximates hold-one-out cross-validation, not extrapolation
Approximation is asymptotic; not necessarily great for small
data sets
Parameter counting is sometime a poor way to evaluate
complexity; see text
Cross-validation makes fewer assumptions, is intuitive and
robust – generally better
Consider alternatives like AICC



Prediction (again)

The best way to assess a model’s predictive accuracy: Predict with
it.



Prediction (again)

The best way to assess a model’s predictive accuracy: Predict with
it.

1 Sequester a subset of your data. Don’t touch it. Don’t look at
it. Pretend it doesn’t exist.

To see if a model can predict the judgments or behavior of new
participants or in new conditions, hold out participants and/or
conditions
Likewise for future judgments given past judgments



Prediction (again)

The best way to assess a model’s predictive accuracy: Predict with
it.

2 Fit models on separate data, compare their predictive log
likelihoods on the sequestered data

No need to penalize model complexity



Cross-validation

If you want robust and efficient estimates of predictive accuracy, you
can repeat those steps for your entire data set;

Don’t look at anything before building the model
Define an automatic policy for partitioning and fitting the
model
Repeat for K “folds” (train on K − 1, evaluate on 1)
Offers approximate predictive likelihoods for new folds

In practice, cognitive scientists rarely use fully held-out test sets.

Tend to look at data when tuning model
Cross-validation with seen-data is still better than testing and
training on the same data



Summary

If we want to choose between models, we can do the following:
1 Compare marginal likelihoods

Easy in concept, difficult (sometimes impossible) in practice
2 Compare predictive loss with fully held-out evaluation set(s)

In practice, typically just one partitioning
3 Compare predictive losses w/cross-validation

A pragmatic approach given sparse data
Mitigates the worst of the “train on test” problem
Good partitionings require care

4 AIC or likelihood-ratio test
Blunt instrument, but common
See also the AICC , BIC, WAIC, . . .


