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Readings

Chapter 5 of F&L

Recommended:

“Modeling individual differences using Dirichlet processes”
[link] by Navarro et al.

https://www.sciencedirect.com/science/article/pii/S0022249605000969


The Effect of Averaging

Admission data from UC Berkeley:

Department
Men

Applied Admitted
Women
Applied Admitted

A 825 511 (62%) 108 89 (82%)
B 560 353 (63%) 25 17 (68%)
C 325 120 (37%) 593 225 (38%)
D 191 53 (28%) 393 114 (29%)
Total 1901 1037 (55%) 1119 445 (40%)

Data aggregation (e.g., averaging) can substantially alter the
interpretation of the data (and of modeling results).



The Effect of Averaging

Averaging of learning curves generated by a model:



Modeling and Data Aggregation

When building models, we need to decide whether to aggregate the
data. We can assess and fit models with:

1 summary statistics (like averages)
2 data merged across individuals
3 individual-level data (independent)
4 groups or clusters of individuals
5 individual-level data (non-independent/hierarchical)



Why aggregate?

Less work for you
Less computationally expensive
Usually implies simpler models

Less risk of overfitting with small data sets
Easier to communicate

Sometimes the only realistic option
E.g., few points per participant



Why avoid aggregating?

People aren’t the same
Different strategies
Different expectations
Motivation, memory, . . .

Pretending they are the same can:
Mask interesting patterns
Lead to spurious conclusions



Groups: Splitting the difference

Accommodate differences
Not as data-intensive as separate individual analyses
Evidence for clusters may be scientifically interesting



Fitting aggregate data: Reaction times

1 Fitting summary statistics of aggregate data
Typically easiest, with greatest downsides
Loses a great deal of information

2 Pretend everyone is the same
Common model, parameters, etc.
If assuming data are already conditionally independent, just
lump them together



Example: Reaction times

Suppose we want to characterize people using a shifted Weibull
distribution.

Models an accumulator like the random walk
Difference: “race” approach – first accumulator past the post
Parameters:

Shift
Scale
Shape



Aggregate reaction times



Aggregate reaction times

F&L (C5): Average quantiles by participant, minimize RMSE
for these

Resembles the empirical plot
Produces a distribution that assigns zero probability to real
judgments

Alternately: MLE



Fitting individual participants

Can directly maximize MLE for each person separately
Unlikely to work well for sparse* data:

few observations per parameter
MLE not trustworthy (or unique)

What if we could
Use a well-informed per-person prior?
Determine which people are similar; combine?



Fitting subgroups

People aren’t all the same
People aren’t all different
Cluster people who are similar

W/raw data or descriptive features
Model-based clustering



Mixture models

Sometimes a distribution is a mixture of multiple latent distributions

An experiment could recruit a mix of performance and
speed-optimizing participants
An individual’s judgments or reaction times might be a mixture
A sensor could have broken/non-broken modes



Mixture models

A probabilistic approach:

p(yi |θ) =
K∑

k=1
πkp(yi |θk)

πk is the weight of the kth component
θ is now an ensemble of K different sets of parameters, one per
group.



Expectation-maximization

Suppose we want to compute an MLE for:
1 The probability the each person belongs to each group P(z)
2 The parameters for each group θk?

If we know who is in what group, we can get (2)
If we know the parameters for each group, we can get (1)

We have neither.



Expectation-maximization

Full joint inference may be intractable.

What if we pretend we know the parameter MLEs, and get MLE
group membership probabilities? (E)

What if we pretend we know zMLE , and MLE parameters? (M)

Better than nothing. . .

What if we alternate between the two?

This provably converges to a locally optimal MLE for z and θ.



Mixtures of Gaussians
If we are using Gaussians, we have closed-form MLEs for both steps.

Listing 5.3 in F&L Chapter 5.
Very popular, even when data aren’t Gaussian (e.g.,
proportions)

Not always correct, but often good enough

(Wikimedia commons, by Junkie.Dolphin)



Overfitting in MLE strikes again!

MLE with Gaussian mixture models suffers from a overfitting /
degeneracy problem:

1 A cluster converges to a single point
2 MLE for standard deviation is zero
3 Error

As dimensionality increases, this problem becomes worse.

MAP estimates under conjugate priors can get around this
Can be an issue for other continuous mixtures as well



K-means as (kind of) a special case

Hard assignments
Equal and spherical covariance
Not really a mixture model



Non-conjugate mixture models

Mixture models are very generally useful
However, standard EM doesn’t work well in

high-dimensional cases
situations with non-conjugate priors

There exist general methods for Bayesian inference in these
settings, adoption is limited



Other uses for mixture models

Not just about individual differences under a model:

can account for error
multiple within-participant strategies
less-arbitrary outlier detection



How many groups?

Standard approaches:
1 Model selection! E.g., BIC. More later
2 Nonparametric models



Nonparametric models

E.g., “stick-breaking models” like Dirichlet process mixture models.

Pros:

Bayesian!
No need to worry about group sizes
Compatible with many probabilistic models

Cons:

Inference can be expensive and/or tricky
Harder to interpret distributions over clusters

Expected number of clusters can be misleading
Point estimates are easier to talk about



Hierarchical models

What if we could have it both ways?

Group-level and individual parameters
Robustness to over-fitting
Inferences about individuals where supported by data
Compatible with groups


