
Computational Cognitive Science
Lecture 4: Parameters and probabilities

Chris Lucas

School of Informatics

University of Edinburgh

September 27, 2024

Readings

Chapter 4 of F&L
Chapter 6 of F&L
Sharon Goldwater’s probability notes

Parameters

Last time we focused on finding estimates for parameters that
minimize some loss function, like RMSD.

Today: Probabilistic approaches to parameter estimation. Useful to:
1 Understand what parameter values are probable in light of data.
2 Exploit prior knowledge about what values are reasonable.
3 Build and evaluate models that anticipate specific response

distributions.
4 Capture and predict patterns that are difficult to express using

standard loss functions.

Notation

θ = [θ1 θ2 ...]: parameters.
y = [y1 ... yK]: all K observations.

For probability distributions, we’ll omit what’s clear from context,
e.g., P(yk) rather than P(Yk = yk |M = m).

P(y|θ): Probability mass function for y conditional on θ.
f (y|θ): Probability density function for y conditional on θ.
Sometimes p(y|θ) (notice the lowercase)
L(θ|y): Likelihood function, treating either of the above as a
unary function of θ. Not P(θ|y) or P−1(y|θ).

(Also know: cumulative density function and cumulative mass
function).

Probabilistic models

A cognitive model is probabilistic if it generates a probability
distribution over y conditional on its parameters θ.

We can use the (negative log) likelihood of our data as a loss
function.

Often less ad-hoc to specify a probability distribution than a
loss directly.
Supports more nuanced predictions, e.g., judgments will be
extreme but not in a particular direction.
Offers tools to model individual differences.

We can make inferences about P(θ|y) if we have a prior P(θ).

Likelihood

Again, P(yk |θ) is the probability mass function for an observation
yk given θ (m, the model, is constant here, and thus omitted for
simplicity).

If our observations are conditionally independent, their joint
conditional probability is

P(y|θ) =
k∏

P(yk |θ)

Likelihood

If we’re happy with our parameters and are making predictions, we
might treat θ as fixed and P(y|θ) as a function of y.

If we’re trying to fit or assess our model given data, we treat y as
fixed, and treat θ as the varying argument to a likelihood function.

F&L use the notation L(θ|y).

Negative log likelihood

If we want to turn the likelihood into a discrepancy function, a
common choice is the negative log-likelihood: − log(L(θ|y)).

Products of probabilities become sums:
log(

∏
k xk) =

∑
k log(xk)

More manageable and comparable numbers; avoids underflow.
Minimum at zero if using mass functions.

Example: Independent Gaussians
Suppose a model predicts judgment k will have a mean of ŷk and a
variance of σ2. Judgment k has a probability density of

N (yk ; ŷk , σ
2) = 1

Z e−
(yk−ŷk)2

2σ2

The log likelihood is − log Z − (yk−ŷk)2

2σ2 where Z (i.e.,
√
2πσ2)

doesn’t depend on y or ŷ .

If σ2 is fixed and the ŷk values are the parameters:

− log(L(θ|y)) = K log Z + 1
2σ2

K∑
k=1

(yk − ŷk)2

This is just a constant plus a scaled sum squared error. Minimizing
it is equivalent to minimizing RMSD.

Example: Independent Gaussians

Note that if we allow σ2 to vary, this loss function will reward
models that are well-calibrated with respect to uncertainty (i.e.,
making larger errors when variance is higher).

Example: Reaction Times

The Wald probability function captures latencies (reaction times)
from a choice experiment.

It describes the time it takes a continuous random walk to drift past
a threshold.

The Wald function has the following parameters:

m: drift
a: boundary position
T : added non-decision time

Let’s only consider m for now.

Example: Reaction Times

For a single data point t and the parameter m, we get the following
probability density function f (t|m):

The gray line marks f (t|m = 2), the black one L(m|t = 1.5).

Example: Reaction Times

If we just plot f (t|m = 2) and L(m|t = 1.5), we get:

We can optimize L(m|t) using the optimizer of our choice (e.g.,
Nelder-Mead).

Maximum Likelihood Estimation

We’ve been talking about finding parameter values that maximize
the likelihood of the data:

θMLE = arg max
θ

L(θ|y)

These maximum-likelihood estimates (MLEs) are frequently used in
cognitive models.

These are (usually) different from maximum a posteriori estimates
(MAPs):

θMAP = arg max
θ

P(θ|y)

MAP estimates and other alternatives
If we have any a priori information about parameters, MAP
estimates can be preferable
If we don’t, MAP estimate is equal to MLE.

Posterior probability:

P(θ|y) = P(y|θ)P(θ)∫
θ′ P(y|θ′)P(θ′) ∝ P(y|θ)P(θ)

arg max
θ

P(θ|y) = arg max
θ

P(y|θ)P(θ)

If P(θ) ∝ 1, then

arg max
θ

P(θ|y) = L(θ|y)

MAP estimates and other alternatives

If we really want to know about θ, a point estimate is often not
enough

Doesn’t tell us how likely it is that a parameter is greater than
zero (or another parameter)
Often not the most useful point estimate.

Consider coin flips:

Flip a coin twice; get two heads.
What’s the MLE for the coin’s bias (i.e., P(H = 1) for the next
flip)?
Same issue tends to apply to MAP estimates.

One alternative: Expected value.

Defining a Likelihood Function

In the last two examples, we were given probability density functions.

We often don’t have that luxury; sometimes a model will:

Give a best or mostly-likely option without associated
probabilities.
Specify a process that generates judgments.
Give probabilities or utilities that an agent might assign to
options.

In these cases, we need a data model to assign probabilities to data.

The Data Model

The Data Model

Even if our model produces probabilities, we may need to do some
work. For example:

The GCM gives response probabilities for different categories,
but our data may be numbers of people choosing each category.
Here, a multinomial distribution may be appropriate.

The Data Model

Even if our model produces probabilities, we may need to do some
work. For example:

A model might give probabilities that an agent should assign,
subjectively, to events. Will discrete judgment probabilities
match those probabilities?

Probability matching appears to be common, but why should
this happen?
Maximizing is arguably more rational in many contexts
Soft maximization or “Softmax” includes matching, max,
random as special cases: P(r) ∝ P(b)γ

The Data Model

Even if our model produces probabilities for judgments, we may
need to do some work. For example:

A model might assign probabilities of zero to some outcomes –
should we plan to bin the model if one such outcome occurs?

E.g., adding a category “C” to options under the GCM, but no
category-C exemplars.

Summary

Maximum-likelihood estimates: arg maxθ L(θ|y)
Often preferable to least-squares or other alternatives
Probabilistic but only a “halfway house” to fully Bayesian
methods

Alternerative: MAP estimate
Sometimes we need (or want) a data model to predict a
probability distribution from the output of our model, even if
the model gives probabilities.

