
4 Maximum Likelihood Parameter
Estimation

In the previous chapters, we encountered one of the key issues in computational mod-
eling: a full, quantitative specification of a model involves not just a description of
the model (in the form of algorithms or equations), but also a specification of the
parameters of the model and their values. Although in some cases we can use known
parameter values (e.g., those determined from previous applications of the model; see
Oberauer and Lewandowsky, 2008), in most cases we must estimate those parameters
from the data. Chapter 3 described the basics of parameter estimation by minimizing the
discrepancy between the data and the model’s predictions. Chapter 4 deals with a pop-
ular and more principled alternative approach to parameter estimation called maximum
likelihood estimation.

Unlike the techniques discussed in the previous chapter, maximum likelihood estima-
tion is deeply rooted in statistical theory. Maximum likelihood estimators have known
properties that are not possessed by estimates obtained via minimizing RMSD (except
under specific situations detailed later); for example, maximum likelihood estimates are
guaranteed to become more accurate on average with increasing sample size. Addition-
ally, likelihood can be used to make statements about the relative weight of evidence for
a particular hypothesis, either about the value of a particular parameter or about a model
as a whole. This lays the groundwork for the material in upcoming chapters: likelihood
plays a key role in Bayesian parameter estimation, and we will later use the idea of
likelihood as the strength of evidence to explore a principled and rigorous technique for
evaluating scientific models.

4.1 Basics of Probabilities

4.1.1 Defining Probability

The term “likelihood” in common parlance is used interchangeably with probability;
we might consider the likelihood of it raining tomorrow (which varies considerably
between the two authors, who at the time of writing live in Australia and the UK), or
the likelihood that an individual randomly selected from the population will live past
the age of 80. By contrast, when considering statistical or computational modeling, the
term likelihood takes on a very strict meaning which is subtly – but fundamentally –
different from that of probability.
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4.1 Basics of Probabilities 73

The best way to define likelihood, and to distinguish it from probability, is to start with
the concept of probability itself. We all have some intuitive notion of what a probability
is, and these intuitions probably make some connection with the formal definitions we
will introduce here. A strict definition of probability relies on the notion of samples,
events, and outcomes. Think of the casino game of roulette, in which a wheel containing
slots corresponding to numbers is spun, and a ball is thrown in; the game consists of
gambling on (i.e., guessing) the slot into which the ball will land. Each time the croupier
spins the wheel, and the ball is thrown in and settles in a slot, we obtain a new sample.
The outcome for a spin corresponds to the slot in which the ball came to rest, which is
one possible outcome from the sample space of all possible slots. We can also define an
event, which is simply a sub-set of the sample space, by considering the various gambles
I could have made. Indeed, I have a large number of possible gambles I could make in
roulette; I could bet on a single number (“straight up”), but could also bet on an even
number coming up, or a number between 1 and 18 (inclusive), or that the color of the
number is red. Each of these refers to an event, which is a possible set of outcomes
for the experiment. For example, the event “odd number” consists of the outcomes
“number 1,” “number 3,” “number 5,” and so on, all the way up to “number 35” (the
largest odd number possible in roulette). Later on we will consider cases where the
outcomes are not enumerable (e.g., probabilities on continuous dimensions like distance
and time).

Assigning a probability P(a) to an event a involves giving it a numerical value reflect-
ing our expectation of the event. There has been, and continues to be, a great deal of
debate over the nature of these values and how they relate to affairs in the world (e.g.,
Keynes, 1921; Jeffrey, 2004; Venn, 1888). In being more concerned with the mathemat-
ics of probabilities than their interpretation, we will follow the lead of early pioneers
in the world of probability such as Pascal, Fermat, and Newton, who were concerned
with the application of chance and probabilities (specifically, gambling: David, 1962).
We are interested in probability theory as a foundation for inference from computational
models.

4.1.2 Properties of Probabilities

Probability theory starts off with the following fundamental assumptions, or axioms:

1. Probabilities of events must lie between 0 and 1 (inclusive);
2. The probabilities of all possible outcomes must sum exactly to 1;
3. In the case of mutually exclusive events (that is, two events that cannot both occur

simultaneously, such as the ball in roulette settling on both an odd and an even
number), the probability of any of the events occurring is equal to the sum of their
individual probabilities.

These few starting assumptions give us a number of other useful properties of prob-
abilities. One is the notion of a joint probability, denoted P(a, b), which gives the
probability that both a and b occur (for example, that tomorrow it will be dry in Perth and
rainy in Bristol). Joint probabilities allow us to formally define the concept of mutual
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74 Maximum Likelihood Parameter Estimation

exclusivity, introduced in the third axiom above: two events are mutually exclusive if
P(a, b) = 0. Be careful to note that the joint probability P(a, b) can never exceed the
individual probabilities P(a) and P(b).

An idea that will be critical for our discussion of likelihoods (and, later, Bayesian
techniques) is that of conditional probability. The conditional probability of a given b,
denoted P(a|b), tells us the probability of observing event a given that we have observed
event b. If a and b are independent, the probability of observing a is unaffected by
whether or not we observed b; that is, P(a|b) = P(a). This formally states one assump-
tion we make when performing standard statistical tests such as the t-test: the probability
of observing a particular measurement from one participant does not depend on the
observations we collected from other participants. If a and b are not independent, b
gives us some information about a and therefore changes the probability that we will
observe a.

Conditional dependence is essential for reasoning with mathematical or compu-
tational models, since we are usually concerned with some conditional relationship
between data and a model. Specifically, we are usually concerned with the probability
of observing a set of data given a particular model. This relationship is important
for telling us how consistent some data are with a particular theory; a fully specified
model will make predictions about data we have not yet collected, and we can then use
the conditional probability P(data|model) to assess the extent to which the data were
predicted by (i.e., consistent with) the model.

There are several relationships between joint probabilities and conditional probabili-
ties that are additionally useful for modelers of behavior. First, if two outcomes are inde-
pendent (as defined using conditional probabilities above), then their joint probability –
the probability of observing event a and event b – is computed simply by multiplying
their individual probabilities:

P(a, b) = P(a) × P(b). (4.1)

More generally, if a and b are not independent, and if we know the conditional relation-
ship a|b between a and b, the joint probability is given by:

P(a, b) = P(a|b) × P(b). (4.2)

This relationship is of interest in cases where contingencies exist in experimental data.
For example, in some developmental experiments, a child is tested on some easy pass/
fail task, and is then presented with some more difficult task only if the easier test
is passed (Hood, 1995; Hughes et al., 1994). Because of the contingent nature of the
experiment (the probability of passing the second test given the first test was failed is 0,
since the child is never given the chance to pass the test), the joint probability of passing
both tests is properly conceptualized by Equation 4.2 rather than Equation 4.1.

Before we can begin to relate probability models to data in detail, we first need to
discuss how we formulate the predictions of models. We need some way of saying how
consistent possible data sets are with the model, and we need to do this for all possible
data sets we could observe. This comes down to specifying a predicted probability for
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4.1 Basics of Probabilities 75

all possible outcomes in the experiment to which the model is being applied. Accord-
ingly, we start by considering all the possible hypothetical sets of data that the model
can predict.

4.1.3 Probability Functions

When working with models in the maximum likelihood framework, we will usually
consider all the possible events the model could predict, and an associated measure of
their probability. In this book we will refer to these functions generally as probability
functions. It turns out there are several probability functions we might use to characterize
a model, depending on the nature of the data. In the case where events are discrete, the
probabilities are specified as a probability mass function. There are many examples of
discrete measures in psychology: for example, the number of trials on which a partici-
pant provided a correct answer; whether a child passes or fails a developmental test; or
the rating of a statement on a Likert scale.

A probability mass function is shown in Figure 4.1 for the example of the catego-
rization task discussed in Chapter 1. There, we presented one model of categorization,
GCM (Nosofsky, 1986), in which objects are classified by assessing their similarity to
stored exemplars. GCM produces predictions by calculating the similarity of an object to
each exemplar in memory, and then converting summed similarities into categorization
probabilites using the simple choice rule described in Equation 1.5. This equation is
called Luce’s choice rule (Luce, 1959), and in the case of two categories A and B it
gives us the probability P(Ri = A|i) that a given stimulus i is assigned to category A
(vs. B). For the following discussion, we will assume a specific stimulus i, and simply
write PA rather than P(Ri = A|i).

The issue we are faced with as modelers is that PA, being a probability, is an expec-
tation about what will happen on each trial. However, each trial will have a discrete
outcome: the stimulus is either assigned to category A or category B. This is very similar
to the situation of tossing a coin; the coin has a probability of coming up heads (vs. tails),
and each coin toss will give us either a head or a tail. Furthermore, in psychology we are
usually interested in the outcome from a set of trials. For example, if we test stimulus i
10 times, how often is it assigned to category A?

This is what is plotted in Figure 4.1. The figure does not show actual data; rather, it
shows the possible things that might happen in the experiment given a statistical model.
Figure 4.1 plots the predictions of a statistical model called the binomial function; we
will examine this model in more detail later. For the moment, we can see in Figure 4.1
that the binomial model assigns a probability to each possible outcome. The different
outcomes here are the number of times NA that stimulus i is categorized as being in
category A, assuming the total number of trials on which i is tested is equal to N; in the
figure, N is set to 10. The only information we need from the model is PA, and we get
this from GCM. Accordingly, we are taking a predicted categorization probability PA

from GCM, and then work out how likely each outcome NA in the experiment is given
that predicted probability.
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Figure 4.1 An example probability mass function: the probability of responding A to exactly NA
out of N=10 items in a categorization task, where the probability of an A response to any
particular item is PA = 0.7.

At this point, be careful to distinguish two different probabilities: PA is a parameter of
the binomial probability function (provided to us by GCM) that specifies the probability
of categorizing any one stimulus as being in category A, while the y-axis in Figure 4.1
plots the probability of seeing each outcome (a particular number of A responses, NA)
given PA (equal to 0.7 in the example plotted in Figure 4.1 ) and the total number of trials
N (here N is set to 10). Notice that although on average a person is predicted to make
an A response on 7 out of 10 trials, by chance she may make only 3 such responses, or
make an A response on all 10 trials, due solely to sampling variability. This sampling
variability shows up in the assignment of clearly non-zero probabilities to a range of
different NA. Note that all the probabilities in Figure 4.1 add to 1, consistent with the
second axiom of probability theory. This is because we have examined the entire sample
space for NA: an individual could categorize a minimum of 0 and a maximum of 10 items
as category A items from a set of 10 items, and all intermediate values of NA are shown
in Figure 4.1. As we will see shortly, the result is that we can use the binomial function
to relate the model predictions to actual obtained data, by asking (for example) how
likely it is that someone would categorize a stimulus as category A 7 out of 10 times
given PA. That is, how probable are the data given the model?

We were able to plot probability values in Figure 4.1 because there are a finite number
of discrete outcomes, each with an associated probability of occurrence. What about
the case where variables are continuous rather than discrete? Continuous variables in
psychology include direct measures such as response latencies (e.g., Luce, 1986), gal-
vanic skin response (e.g., Bartels and Zeki, 2000), and neural firing rates (e.g., Hanes
and Schall, 1996), as well as indirect measures such as latent variables from structural
equation models (e.g., Schmiedek et al., 2007). Accuracies are also often treated as
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4.1 Basics of Probabilities 77

continuous variables when a large number of observations have been collected, or when
we have calculated mean accuracy.

One property of a continuous variable is that the probability of observing a specific
value is effectively 0 (as long as we do not round our observations, and thus turn it into
a discrete variable). That is, although we might record a latency of 784.5 ms, for a fully
continuous variable it is always possible to examine this latency to another decimal place
(784.52 ms), and another (784.524 ms), and another (784.5244 ms). Accordingly, we
need some way of representing information about probabilities even though we cannot
meaningfully refer to the probabilities of individual outcomes.

There are two useful ways of representing probability distributions for continuous
variables. The first is the cumulative distribution function (CDF; also called the
cumulative probability function and, confusingly, the probability distribution function).
An example CDF is shown in Figure 4.2, which gives a CDF predicted by a model

of response times called the shifted Wald distribution (Heathcote, 2004; Luce, 1986;
Matzke and Wagenmakers, 2009). This model is similar to the response time model
discussed in Chapter 2, except that both time and the amount of evidence are continuous
dimensions; in contrast, the random-walk model discussed in Chapter 2 assumes that
time unfolds in discrete steps. The Wald distribution is also slightly different in assuming
only a single (upper) boundary, and so more naturally applies to situations where only
a single response can be made (e.g., simple response time; Luce, 1986) or where the
response probability is close to 1. For the moment, we will treat the model as a black
box and simply note that when we feed a certain set of parameters into the model,
the predicted CDF shown in Figure 4.2 is produced. The abscissa gives our continuous
variable of time t (Latency in Figure 4.2); along the ordinate axis we have the probability
that a decision latency x will fall below (or be equal to) time t; formally,
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Figure 4.2 An example cumulative distribution function (CDF). For a particular value along the
abscissa, the function gives the probability of observing a latency less than or equal to that value.
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78 Maximum Likelihood Parameter Estimation

F(t) = P(x ≤ t). (4.3)

For example, the CDF for time t = 2 gives the predicted probability that a latency
will be 2s or smaller. Note that the ordinate is a probability and so is constrained to lie
between 0 and 1 (inclusive), consistent with our first axiom of probability.

Another representation of probability for continuous variables, and one more relevant
to the likelihood framework, is the probability density function (PDF), or simply prob-
ability density. Figure 4.3 plots the probability density function for latencies predicted
by the shifted Wald, using the same parameters as were used to generate the CDF in
Figure 4.2. The exact form of this density is not important for the moment, except that
it shows the positively skewed shape typically associated with latencies in many tasks
(Luce, 1986; Wixted and Rohrer, 1994). What is important is what we can read off
from this function. Although it might be tempting to try and interpret the y-axis directly
as a probability (as in Figure 4.1), we cannot: Because we are treating latency as a
continuous dimension there are effectively an infinite number of precise latency values
along that dimension, which means that the probability of a particular latency value is
vanishingly small. Nonetheless, the height of the PDF can be interpreted as the relative
probability of observing each possible latency. Putting these two things together, we can
see why the function is called a probability density function. Although a particular point
along the time dimension itself has no “width,” we can calculate a probability by looking
across a range of time values. That is, it is meaningful to ask what the probability is of
observing a latency between, say, 2 and 3s. We can do this by calculating the area under
the curve between those two values. This gives the probability density function its name:
it provides a value for the height (density) of the function along the entire dimension of
the variable (in this case, time), and this density can then be turned into an area, and
thus a probability, by specifying the range for which the area should be calculated. As a
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Figure 4.3 An example probability density function (PDF). See text for details.
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4.1 Basics of Probabilities 79

real-world example, think about a cake. Although making a single cut in a cake does not
actually have any volume (the cut cannot be eaten), if we make two cuts we can remove
the area of cake sliced out by the cuts and devour it. The height of the curve corresponds
to the height of a cake: a taller cake will give us more cake if we make two cuts spaced
a specific distance apart.

Formally, the PDF is the derivative of the CDF (taken with respect to the dependent
variable, in this case t); that is, it gives the rate of change in the cumulative probability
as we move along the horizontal axis in Figure 4.2. To make this more concrete, imagine
Figure 4.2 plots the total distance covered in a 10 m sprint (instead of probability) as a
function of time. As time passes, the sprinter will have covered more and more distance
from the beginning of the sprint. In this case the PDF in Figure 4.3 would give the
instantaneous velocity of the sprinter at any point in time in the race. According to
Figure 4.3, this would mean the sprinter started off slowly, sped up to some peak velocity
at around 1s, and then slowed down again.

We can also flip this around: the CDF is obtained by integrating (i.e., adding up) the
PDF from the minimum possible value to the current value. For example, the value of
the CDF at a value of 2s is obtained by integrating the PDF from 0 to 2s; or, equivalently,
working out the area under the PDF between 0 and 2s, which in turn gives us the
probability of observing a latency between 0 and 2s; this is the area shaded in light
grey in Figure 4.3. If we read off the value on the ordinate in Figure 4.2 where the
decision latency is 2s, we find that this probability equals around 0.9; that is, around
90% of latencies are predicted to lie in the range 0s to 2s.

Because the probability of an observation on a continuous variable is effectively 0,
the scale of the ordinate in the PDF is in some sense arbitrary. However, an important
constraint in order to give the relationship between the CDF and the PDF is that the
area under the PDF is equal to 1, just as probabilities are constrained to add up to 1.
This means that if the scale of the measurement is changed (e.g., we measure latencies
in milliseconds rather than seconds), the values on the ordinate of the PDF will also
change, even if the function itself does not. Again, this means that the scale in Figure 4.3
cannot be interpreted directly as a probability, but it does preserve relative relationships,
such that more likely outcomes will have higher values. We can also talk about the prob-
ability of recording a particular observation with some error ε, such that the probability
of recording a latency of 784.52 ms is equal to the probability that a latency will fall in
the window 784.52 ms ±ε (Pawitan, 2001). This equates to measuring the area under
the density function that is cutoff by the lower limit of 784.52 ms −ε, and the upper
limit of 784.52 ms +ε.

Before moving on, let us confirm what is shown in Figures 4.1 to 4.3. Each of these
figures shows the predictions of a model given a particular set of parameter values.
Because of the variability inherent in the model and in the sampling process (that is,
the process of sampling participants from a population and data from each participant),
the model’s predictions are spread across a range of possible outcomes: number of A
responses (Figure 4.1), or latency in seconds (Figures 4.2 and 4.3). What the model
does is to assign a probability (in the case of discrete outcomes) or probability density
(in the case of continuous outcomes) to each possible outcome. In most situations, a
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80 Maximum Likelihood Parameter Estimation

model will predict that some outcomes are more likely than others, which, as we will
see next, will be critical when relating the model to data we have actually observed.

4.2 What Is a Likelihood?

So far, we have dealt purely with model predictions. The models we have skimmed over
so far assign each possible outcome a probability or probability density; these in turn
represent the extent to which the model expects those outcomes to be observed if we
run the experiment and collect data. We now come to the concept of the likelihood,
where we will see how we can relate probabilities and probability densities to the actual
outcome we have observed when we run an experiment and analyze the data.

The first important thing to grasp when dealing with likelihoods is that the distribution
and density functions we have looked at so far (those shown in Figures 4.1–4.3) are
actually conditional. They show the predicted distribution or density function given a)
a model, and b) a specific set of parameters for that model. For a single data point y, a
model M, and a vector of parameter values θ , we will therefore refer to the probability
or probability density of an observed data point given the model and parameter values
as f (y|θ , M). Here, f is the probability mass function (an example function is shown in
Figure 4.1) or probability density function (an example is shown in Figure 4.3).1 We
will assume for the rest of the chapter that we are reasoning with respect to a particular
model, and will leave M out of the following equations, though you should read any of
those equations as being implicitly conditional on a particular model M. We will return
to M in Part 3 of the book, where we will look at comparing different mathematical
or computational models on their account for a set of data (i.e., we will consider the
probability of the data under different models).

When we have observed some data, we do not really care about the entire probability
distribution. Rather than considering all possible values of y, as in Figure 4.3, we are
now interested in the probability (discrete variable) or probability density (continuous
variable) for the data y we have actually observed. To illustrate, Figure 4.4 shows some
obtained data points, represented by stars, for the examples we have looked at so far.
In the top panel we see a single data point for the categorization task: 6 out of 10
responses were A responses. This data point might correspond to 10 responses from
a single participant, or the responses from 10 participants each completing a single trial
on a particular test item. The dashed lines illustrate how we can read off the probability
of observing exactly 6 (out of 10) A responses according to the model; this probability,
read off the y-axis, works out to be around 0.2. In practice we do not determine this
value graphically, but will feed our data y and parameters θ into a function f (y|θ), and
obtain a probability computationally.

In the bottom panel of Figure 4.4, we see the case where we have a single latency in a
response time experiment. Again, a graphical depiction of the relationship between the

1 f could also represent a CDF, but we will rarely refer to the CDF when working with likelihoods.
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Figure 4.4 Reading off the probability of discrete data (top panel) or the probability density for
continuous data (bottom panel). The star in each panel shows an example data point, and the
dashed lines show how the function can be used to convert the data value into a probability or
probability density (read off the y-axis).
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82 Maximum Likelihood Parameter Estimation

data point and its probability density is shown in this panel. The principle is no different
to that illustrated in the top panel, except that we now read off a probability density.

Of course, we will usually have more than a single data point. For example, we
might collect 100 response times from a participant in an experimental condition. When
we have a number of data points (as we usually will in psychology experiments), we
can obtain a joint probability or probability density for the data in a data vector y
by multiplying together the individual probabilities or probability densities, under the
assumption that the observations in y are independent:

f (y|θ) =
k∏

f (yk|θ), (4.4)

where k indexes the individual observations yk in the data vector y (remember, this is
also implicitly conditional on our particular model M).

Now that we have explicitly recognized that we can relate collected data to a model
through a probability function, we can now answer the question heading up this section:
what is a likelihood? The likelihood involves exactly the same function as the probability
density, but uses it for a different purpose. A probability function tells us about the
probability of data y given a parameter vector θ . The likelihood function performs a
mapping in the opposite direction: given the data y, what is the likelihood of the values
in the parameter vector θ? Rather than keeping the model and the parameter values fixed
and looking at what happens to the probability function or probability density across
different possible data points, we instead keep the data and the model fixed, and observe
changes in likelihood values as the parameter values change.

The difference between probability functions and likelihood functions is clearer when
illustrated graphically. Figure 4.5 plots out the Wald distribution we have been dis-
cussing. The top panel shows a surface drawing out the probability density function
p(t|m) for each possible value of t and m, within a range of values. Here, t refers to a
single response time, and m is the drift parameter of the Wald distribution. Although the
surface is depicted by lines, the surface is fully continuous along the x and y axes. Each
contour in the figure is a probability density function, plotting out the probability density
function for a particular value of m. We’ve only plotted some of the infinite number of
possible probability density functions (keep in mind that m is a continuous parameter).
As an illustration, a particular probability density function p(t|m = 2) is marked out as
a grey line on the surface in the top panel, running perpendicular to the m axis at m = 2;
the corresponding cross-section through the surface is plotted in the middle panel of
Figure 4.5.

Also marked out in the top panel of Figure 4.5 is a heavy line running perpendicular
to the response time axis at t = 1.5s. This line, plotted as a cross-section of the surface in
the bottom panel of Figure 4.5, is a likelihood function, denoted L(m|t).2 This represents
the state of affairs we would usually have in estimating a parameter, where we have col-
lected some data (in this case, a single response time t=1.5 s) and have some uncertainty
about the value of the parameter(s). Just as for the probability density function, the

2 The likelihood function is sometimes denoted L(m; t).
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Figure 4.5 Distinguishing between probabilities and likelihoods. The top panel plots the
probability density p(m|t) as a function of the Wald model parameter m and a single response
time t. Also shown are cross-sections corresponding to a probability density (grey line) and
likelihood function (dark line), which are respectively shown in profile in the middle and bottom
panels. See text for further details.

likelihood function tells us about possible states of the world; the difference is that these
states here refer to different possible parameter values, and the likelihood function tells
us about how likely each of those parameter values is given the data we have observed.
In that sense, the likelihood function is a little bit like a probability density for the
parameters rather than the data. However, an important warning is that we cannot treat
the likelihood function exactly like a probability density; it doesn’t integrate to 1. As
discussed in later chapters, we can use the machinery of Bayes’s rule to combine p(t|m)
with the prior probability of m, p(m), to obtain the probability density for the model
parameter given the data p(m|t). Nonetheless, the likelihood function L(m|t) by itself is
useful for parameter estimation.
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Figure 4.6 The probability of a data point under the binomial model, as a function of the model
parameter PA and the data point NA, the number of A responses in a categorization task.
The solid line shows the probability mass function for a particular value of PA, while each of
the strips represents a continuous likelihood function.

All this can be a little confusing, because both the probability density function and the
likelihood function are specified by the same probability density function p(t|m); p(t|m)
will always be equal to L(m|t) for given values of m and t. The probability density
function and likelihood function are distinguished by whether m is fixed and t traces out
the function (the probability density function), or t is fixed and m traces out the function
(the likelihood function).

As another example, and to reinforce this distinction, Figure 4.6 plots a similar sur-
face, this time for the example of the binomial distribution given in Figure 4.1. The
binomial distribution tells us the probability with which we should expect each pos-
sible outcome, in this case the number of A responses in the categorization paradigm
(here labelled NA). The binomial distribution assigns these probabilities on the basis
of the total number of responses collected in the experiment (N=10 here), and the
parameter PA, the probability of an A response being produced. The parameter PA is just
a statistical parameter, and is not the parameter of a psychological model, but remember
that it in turn can be generated by a model such as GCM. The surface in Figure 4.6,
which plots p(NA|PA) for different combinations of NA (the data) and PA (the binomial
model parameter), looks irregular because we are considering a discrete variable NA.
The parameter PA, by contrast, is continuous because it can lie anywhere between (and
including) 0 and 1.
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4.3 Defining a Probability Distribution 85

Each cut of this surface perpendicular to the PA axis in Figure 4.6 gives us the
binomial probability mass function p(NA|PA) for a particular value of PA. The heavy
line on the surface traces out one such probability mass function, for PA = 0.7; this
function is identical to the one in Figure 4.1. In contrast, each ribbon in Figure 4.6 traces
out the likelihood function for each value of NA, L(PA|NA); that is, NA is fixed and PA is
allowed to vary. Again, this would correspond to the situation where we have observed
some data (e.g., 7 out of 10 responses were A responses) and now want to estimate the
parameter PA. The difference between the likelihood and the probability functions is
evident from their different characteristics: each probability mass function in Figure 4.6
is composed of a series of steps (being a discrete function, just like in Figure 4.1), while
the likelihood functions are smoothly varying (being continuous over PA).

4.3 Defining a Probability Distribution

Before we can use the likelihood function to fit a model to data, the probability
distribution first needs to be specified, whether it be a probability mass function or
probability density function. A deterministic model – a model which always predicts
the same outcome given some parameter values – will not be able to take advantage of
likelihood methods. If the model predicts a deterministic outcome based on a particular
set of parameter values, our PDF would have a singularity (i.e., would go to infinity)
at the predicted data value, and would be zero otherwise. In the case of a probability
mass function, we would have one outcome predicted with probability one, and all
other outcomes associated with a probability of zero. Accordingly, it is critical that our
model specifies some probability function across all the possible outcomes that could
be observed. As should be obvious from our discussion so far, the probability function
maps parameter(s) into a probability or probability density for every possible outcome
(i.e., every possible data value).

In some cases, specification of a probability function is not only required for the
reasons just outlined, but is itself the goal of the modeling. For example, one interesting
aspect of response times or choice times (e.g., Balota et al., 2008; Brown and Heath-
cote, 2005; Carpenter and Williams, 1995; Ratcliff, 1998; Usher and McClelland, 2001;
Wixted and Rohrer, 1994; see Luce, 1986, for a review, and Chapter 14 for more on
models of choice response time) is that they vary within individuals, even in response
to the same stimulus, and a major aim of response time models is to capture the entire
distribution of response times (see Chapter 2). Applying models of response time distri-
butions to data is informative because different parameters in response time models tied
to particular psychological processes will tend to systematically map to different aspects
of the distributions. Accordingly, by estimating the parameters of a model distribution,
or by looking at the change in the location, shape, and skew of the data themselves and
linking these to a model (e.g., Andrews and Heathcote, 2001), researchers can make
inferences about the underlying processes.

But where do these probability functions come from? How do we arrive at an appro-
priate probability function for a particular data set? For the examples we looked at
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86 Maximum Likelihood Parameter Estimation

earlier, where did those binomial and Wald functions come from, and why did we focus
on those functions in particular?

An appropriate probability distribution for data can be obtained by considering
a) the nature of the dependent variable to which the model is being fit or compared,
and b) the probability distribution predicted by the model. The nature of the dependent
variable (discrete vs. continuous) tells us whether a probability mass function or a PDF
will be more appropriate. Second, the probability distribution predicted by our model,
together with the nature of the data, tells us whether we can apply the model to the data
directly, or whether we need to introduce some intermediate probability function first.

4.3.1 Probability Functions Specified by the Psychological Model

The response time models just discussed are a good example of a case where the prob-
ability density function is fully specified by the model. We have already discussed one
such model, the Wald distribution. Although we have focussed our description of the
model in terms of what happens on individual trials, it is possible to work out the
distribution of response times (i.e., the times when the random motion first crosses
over the boundary), as was done most prominently by Schrödinger (1915) and Wald
(1947). As above, we will deal with the shifted Wald (Heathcote, 2004; Matzke and
Wagenmakers, 2009), which allows for a constant intercept representing non-decisional
encoding and motor processes. The formula for the shifted Wald probability density
function is

f (t|a, m, T) = a√
2π (t − T)3

exp

(
− [a − m (t − T)]2

2 (t − T)

)
, t > T . (4.5)

In the equation, t is the response time, and the parameters m, a, and T are respectively
the drift, the position of the response boundary, and the shift term representing the
added non-decision time. This is easily implemented in R as shown in Listing 4.1. Using
Equation 4.5, we can calculate a probability density for a data point given the values we
feed in for m, a, and T . In this case, the probability density function is itself the model
of behavior, and no further assumptions are needed to relate the model to the data.

1 rswald <− f u n c t i o n ( t , a , m , Ter ) {
2 ans <− a / s q r t (2 ∗pi∗ ( t−Ter ) ˆ 3 ) ∗
3 exp (−(a−m∗ ( t−Ter ) ) ˆ2 / (2 ∗ ( t−Ter ) ) )
4 }

Listing 4.1 The shifted Wald probability density function

4.3.2 Probability Functions via Data Models

Not all models are like the Wald. In many situations a model may only make predictions
about mean or aggregate performance, and will not be cast in a way that allows the
model to directly predict an entire distribution.
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4.3 Defining a Probability Distribution 87

One such case is the GCM model, which we have covered several times already. Look
back at the GCM equations in Chapter 1. They describe, step by step, how we go from
a stimulus to be categorized – and the stored category members to which we compare
it – to a probability of categorizing that stimulus as being in category A. Together, these
equations are all involved in calculating the predictions of the model. Along the way,
we also see the involvement of a model parameter: the parameter c scales the similarity
function in Equation 1.4.3 However, we cannot relate the model directly to the data, as
the model does not specify the probability of different possible data values. Instead, as
described above, we can use the binomial function to take the predicted probability of
an A response, specify the probability of observing each possible number of A responses
(given the total number of trials), and use that function to determine the probability of
our obtained data given the model parameters.

Listings 4.2 and 4.3 give R code for obtaining the likelihood of some data under
GCM given some parameter values. The data we are using come from Nosofsky (1991),
who presented participants with the faces shown in Figure 1.8. Participants learned to
categorize the top row of faces into one category, and the bottom row into a second
category; they were then tested on a larger number of faces, including many faces not in
the original training set. For the moment, we will calculate the likelihood for people’s
responses to a single face (the one in the top-left of Figure 1.8).

The first line of Listing 4.2 “sources” Listing 4.3 so that the function GCMpred

can be called. Sourcing a file executes the lines in the file as though they had
been typed into the R console. In this case, GCMpred.R only contains a function,
so the effect of sourcing that file is to define the function (it will actually be called
later on).

The following two lines provide information about the data being modeled. Nosofsky
(1991) tested 80 participants on each face twice, so we know that the total number
of observations for a face is 2 × 80, and assign this to the variable N. The variable
N A is the number of those N trials on which people made an A response. We can
work this out from Table 1 in Nosofsky’s paper, which gives the response probabilities
for each face in the experiment.4 The probability of an A response for Face 1 was .968,
so we estimate the number of A responses by multiplying this by N, and rounding
the result so we have an integer value. (Of course, if this was our own experiment
we would know the exact number.) The next two lines then assign values to some
parameter values; for now, these are the best fitting parameter values obtained by
Nosofsky and given in his Table 2. Note that w is a vector of four elements giving the
weights along each of the four dimensions along which the face stimuli vary (more on
this shortly).

3 It is possible to generalize the model by raising the quantities in Equation 1.5 to some power, which
determines how random the responding in the model is (i.e., how close the probabilities are to chance).
See Ashby and Maddox (1993).

4 Nosofky refers to the categories as Category 1 and Category 2; these are respectively called A and
B here.
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1 s o u r c e ( ”GCMpred . R” )
2

3 N <− 2∗80 # t h e r e were 2 r e s p o n s e s p e r f a c e from 80 p p l
4 N A <− round (N∗ . 9 6 8 ) #N B i s i m p l i c i t l y N − N A
5

6 c <− 4
7 w <− c ( 0 . 1 9 , 0 . 1 2 , 0 . 2 5 , 0 . 4 5 )
8

9 stim <− as . m a t r i x ( r e a d . t a b l e ( ” f a c e S t i m . csv ” , ←↩
sep=” , ” ) )

10

11 exemplars <− l i s t (a=stim [ 1 : 5 , ] , b= stim [ 6 : 1 0 , ] )
12

13 preds <− GCMpred (stim [ 1 , ] , exemplars , c , w )
14

15 likelihood <− dbinom (N A ,size = N ,prob = preds [ 1 ] )

Listing 4.2 Linking GCM and the binomial function

Line 9 reads in the attributes of the faces. The file faceStim.csv is a comma-
separated value file in which each row is a face, and the columns give the value of that
face along each of four face dimensions. These are the multidimensional scaling values
obtained from Nosofsky’s Table A1, and they represent the psychological dimensions
along which the faces vary. These values were obtained by analyzing people’s ratings
of the similarity of the faces outside the context of the categorization task, and then
using a technique called multidimensional scaling (Kruskal and Wish, 1978) to extract
the psychological dimensions along which the faces are situated. Accordingly, it is
assumed that people assess the similarity between exemplars and stimuli within this
multidimensional space. Line 11 then creates a list exemplars that contains two
matrices; the first holds the faces that people were trained to categorize as condition A,
while the second matrix holds those faces assigned by the experimenter to condition B.

The next line calls a function GCMpred that obtains the predicted probability of an A
response for a stimulus (in this case stim[1,], the first face) given the stored exemplars
and the parameters of GCM, c and w. GCMpred is a function defined in a separate file,
and is shown in Listing 4.3; let’s go through it step by step. Line 15 initializes a variable
dist that will hold the distances between the probe stimulus probe and each of the
exemplars. The next few lines are a little cryptic because they use some R-specific tricks
to avoid multiple nested loops. Line 16 loops across the elements in the list exemplars.
Given the structure of exemplars that was described in the previous paragraph, this
means that the loop will be run twice, once with ex equal to the matrix of exemplars
belonging to the A category (the first element of exemplars), and a second time with
ex equal to the matrix of exemplars belonging to the B category.

1 GCMpred <− f u n c t i o n (probe , exemplars , c , w ) {
2

3 # c a l c u l a t e l i k e l i h o d of N A `A ' r e s p o n s e s o u t o f N ←↩
g i v e n p a r a m e t e r c

4 # ' s t im ' i s a s i n g l e v e c t o r r e p r e s e n t i n g t h e ←↩
s t i m u l u s t o be c a t e g o r i s e d

5 # ' exempla r s ' i s a l i s t o f e x e m p l a r s ; t h e f i r s t ←↩
l i s t i t e m i s t h e 'A ' e x e m p l a r s
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6 # i n memory , and t h e second l i s t i t em i s t h e `B` ←↩
e x e m p l a r s i n memory

7 # each l i s t i t em i s a m a t r i x i n which t h e rows ←↩
c o r r e s p o n d t o i n d i v i d u a l

8 # e x e m p l a r s
9 # ' c ' i s t h e s c a l i n g p a r a m e t e r , and 'w ' i s a v e c t o r ←↩

g i v i n g w e i g h t i n g f o r each
10 # s t i m u l u s d imens ion ( t h e columns i n ' s t im ' and ←↩

' exempla r s ' )
11

12 # n o t e : f o r a l a r g e number o f c a t e g o r i e s we c o u l d ←↩
use l a p p l y t o loop a c r o s s

13 # t h e c a t e g o r i e s i n t h e l i s t ' exempla r s '
14

15 dist <− l i s t ( )
16 f o r (ex in exemplars ) {
17 dist [ [ l e n g t h (dist ) + 1 ] ] <− a p p l y ( a s . a r r a y (ex ) , 1 ,
18 f u n c t i o n (x )

s q r t ( sum (w∗ (x−probe ) ˆ 2 ) ) )
19 }
20

21 sumsim <− l a p p l y (dist , f u n c t i o n (a ) sum ( exp(−c∗a ) ) )
22

23 r prob <− u n l i s t (sumsim ) / sum ( u n l i s t (sumsim ) )
24

25 }

Listing 4.3 Code for obtaining predicted probabilities of responses from GCM

The single statement inside the loop does quite a lot. The function apply, which is
one of the base R functions, applies a function or operation to each row or column of an
array. A value of 1 is passed as the second argument here, indicating that the function
should be applied to each row of ex (see the help on apply for more details.). To make
sure that the list element ex is interpreted as an array, we wrap it inside the as.array
function. The final argument to apply describes the function to apply to each row. Here,
we define a function inline, by writing function(x). This tells R that the following
material defines a function with a single argument x. What will actually happen is that
apply will run the function for each row of the input array, and will pass the row in as
the single argument to the inline function. So a reference to x in the function effectively
refers to an arbitrary row in the array passed in as the first argument to apply.

What is the inline function(x) actually doing? It calculates the Euclidian distance
as per Equation 1.3. For each stimulus dimension (i.e., each column of x), we
calculate the difference between the value on that dimension for the stimulus, and the
value on that dimension for x, a particular exemplar. We then square those differences
and sum them, and then take the square root of the sum to obtain the Euclidian distance.
The one new thing in the function is w, which gives a weight for each dimension.
Nosofsky (1986) recognized that people might give more weight to some dimensions
than others when categorizing stimuli, and the vector w represents the weights assigned
to each dimension (the first element corresponding to the first dimension, the second
element to the second dimension, and so on). It is assumed that the weights in w add
up to 1.
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Once the Euclidian distance between each row of ex and the probe has been calcu-
lated, it is stored in dist. After the loop has been run to completion, dist is a list with
each element being a vector storing the distance between each exemplar in that category
(A or B) and the probe. The next line then turns those distances into similarities via
Equation 1.4. We now make use of the R function lapply; this is similar to apply,

but applies to lists, and applies a function to each element of the list. Here, we pass in
dist as an argument, and for each element of dist (i.e, for each of the two categories)
we turn the distances for that category into similarities—note the involvement of the
model parameter c. We then sum those similarities to get a summed similarity between
the probe and all the exemplars in the category currently being analysed; these are stored
in a list sumsim.

Finally, we calculate response probabilities and assign them to the returned variable
r prob. This line implements the choice rule in Equation 1.5, and divides each summed
activation by the total sum of the activations. We use the function unlist here to turn
the list sumsim into a vector. On completion, r prob will hold a response probability
for each response: the probability of making an A response in the first element, and the
probability of making a B response in the second. The vector r prob is then passed
back to the calling script GCMbinom.R.

The final line in Listing 4.2 uses the predictions of GCM to work out the binomial
probability of some obtained data N A and the total number of trials, N. We need to
take this final step to link GCM with the data. As it stands, GCM simply predicts a fixed
value PA that someone will make an A response. In the data we have an obtained number
of A responses, NA, and indeed we could convert this into an empirical probability of
an A response. However, we need to recognize that even with a fixed probability of an
A response, the actual number of A responses observed will vary because of sampling
variability. This situation is formally identical to the case where we flip a weighted coin
N times and record the number of heads (A responses) and tails (B responses). Given
the coin has a probability pheads of coming up heads, the probability distribution across
all possible numbers of heads (out of N) is given by the binomial distribution:

f (k|pheads, N) =
(

N

k

)
pheads

k(1 − pheads)
N−k, (4.6)

where f (k) is the probability of observing exactly k out of N coin tosses come up as
heads, and

(N
k

)
is the combinatorial function from N choose k, giving the total number

of ways in which k out of N tosses could come up heads (if this is unfamiliar, permu-
tations and combinations are covered in most introductory books on probability). In the
case of GCM, we are concerned with the the probability of each possible number of A
responses (k in Equation 4.6) given the probability of an A response (replacing pheads in
Equation 4.6):

f (NA|PA, N) =
(

N

NA

)
PA

NA(1 − PA)
N−NA . (4.7)

R provides the dbinom function implementing the binomial probability mass function.
The relevant prediction from the model is the probability of an A response, so we
examine the first element of preds, the vector of predicted probabilities returned by the
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4.3 Defining a Probability Distribution 91

call to the function GCMpred. Notice we have named the resulting value likelihood:
the data NA are given, so we are calculating the likelihood of the parameter values given
the data.

4.3.3 Two Types of Probability Functions

The case of GCM can be contrasted with the shifted Wald distribution which, as dis-
cussed, directly predicts a full probability density function. These two distinct situations
are made explicit in Figure 4.7.

On the left of the figure, we show the case of a model like the Wald, which is a
psychological model but also describes the sampling process that allows the model to
be directly related to the data, as it produces a full probability function.

The right of Figure 4.7 shows the other scenario in which a model’s predictions are
fed into a data model, along with other information about the assumed sampling process
in the experiment; that data model is then used to generate a full probability function.

In the end, the data model is of no theoretical interest, and we are instead interested in
treating the combination of functions on the right in Figure 4.7 as a single “black box”
function; in the case of the binomial function applied to GCM, the black box gives us
the probability of various values of NA given our parameter c and dimension weights
w, with the intermediate point prediction of GCM, PA, hidden inside the black box.
Since this means that the black box really provides us with a probability mass function

Data model

predicted
probability mass function

or
probability density function

predicted
probability mass function

or
probability density function

model parameters model parameters

experimental details

Model
(e.g., Wald)

Model
(e.g., GCM)

predicted probability
(or other intermediate values)

Figure 4.7 Different ways of generating a predicted probability function, depending on the nature
of the model and the dependent variable. On the left, the model parameters and the model are
together sufficient to predict a full probability function. This usually applies to the case where
the dependent variable is continuous and the model is explicitly developed to predict probability
functions (e.g., response time models). On the right, the model parameters and the model predict
some intermediate value(s), such as proportion correct. Together with other assumptions about
the sampling process, these intermediate values are used to specify a full probability function via
the data model.
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p(NA|c, w), we can flip this around to refer to the likelihood of the parameters given the
observed data, L(c, w|NA). As we saw in Section 4.2, specifically in Figures 4.5 and 4.6,
the computations of p(NA|c, w) and L(c, w|NA) are identical; the difference is whether
we are interested in estimating some unknown parameters based on data (the likelihood)
or working out what types of data we might expect to observe in the future given a set
of known parameter values.

Figure 4.7 also makes clear the importance of distinguishing between different types
of probability. In the case of GCM with a binomial data model, we can talk about a
number of different probabilities:

1. The probability PA, the probability of an A response predicted by GCM;
2. The probability of an A response in the data, obtained by dividing NA by N;
3. The probability of each of the possible outcomes NA predicted by GCM

after applying the binomial data model in Equation 4.7 (i.e., the ordinate in
Figure 4.1).

Whenever working with models like this, it is important not to get these different types
of probabilities confused. To keep these probabilities distinct in your head, it might
help to think about how these different probabilities map on to Figure 4.7 (going from
model parameters to a full probability function) and Figure 2.7 (relating the model to
the data).

4.3.4 Extending the Data Model

The binomial model isn’t the only data model we could use. For example, we might
ask participants to assign the faces in Figure 1.8 to one of four possible categories.
The binomial function specifically applies to cases where there are only two possible
outcomes, so it cannot be used if there are more than two categories. Instead, we can
use an extension of the binomial distribution called the multinomial distribution. The
multinomial distribution works in the same manner as the binomial function, but extends
to a dependent variable with more than two possible categorical outcomes. If we have
J categories of responses, then we are interested in the number of observations Nj in
each category j, j = 1 . . . J. We will represent the Njs together in the vector N. The
multinomial distribution predicts these frequencies from the probability that a particular
observation will fall in category j, pj; we will represent these probabilities together in
the vector p. As an analogy, we can think of our categories as buckets, and observations
as balls that we throw into the buckets, with each ball landing in one (and only one)
bucket. We are then interested in how the balls are distributed across the buckets.

To reiterate, both N (the number of balls landing in each bucket) and p (the predicted
probability of a ball landing in each bucket) are vectors, with each element in the vector
referring to a category, and each vector containing J elements. Because we have a
fixed total number of observations to be distributed across the categories (we’ll call
this NT for total number of observations), the elements in N must add up to NT ; that
is,
∑

j Nj = NT . Similarly, our probabilities will necessarily add up to 1:
∑

j pj = 1.
The multinomial function then provides the probability of observing the frequencies
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4.3 Defining a Probability Distribution 93

in the categories, N, given the probabilities in p. The general form of the multinomial
distribution is as follows:

f (N|p, NT) = NT !

N1!N2! . . .NJ!
p1

N1 p2
N2 . . . pJ

NJ , (4.8)

with N, p, NT , and J as described above. The exclamation marks in Equation 4.8 do not
express surprise, but instead denote the factorial function k! = 1 × 2 × 3 × · · · × k.
It turns out that the multinomial function is similar in form to the binomial function in
Equation 4.6. Equation 4.6 is a simplification of another way of expressing the binomial
distribution function:

f (N|p, NT) = NT !

N!(NT − N)!
pN(1 − p)NT−N , (4.9)

where the variables and parameters from Equation 4.6 have been replaced with N,
p and NT . You’ll notice that Equations 4.8 and 4.9 are similar in form; in fact, the
binomial distribution is simply the multinomial distribution obtained when we have
only two categories (e.g., heads vs tails, or correct vs. incorrect). Equation 4.9 simplifies
Equation 4.8 by taking advantage of the constraint that the probabilities of the two out-
comes must add up to one: if we are correct with probability p, then we must necessarily
be incorrect with probability 1 − p.

The multinomial function is implemented in R as dmultinom. It takes as input the
vector N, the scalar NT , and the vector p. Accordingly, if our GCM function GCMpreds

returned a predicted probability for four possible response categories A, B, C, and D,
we could feed the vector of those probabilities into the dmultinom function. Note
that this calling convention differs slightly from the binomial: the dbinom requires
the probability of only one of the categories, while dmultinom requires the response
probability for all of the categories.

4.3.5 Extension to Multiple Data Points and Multiple Parameters

The examples plotted in Figures 4.5 and 4.6 are simple examples that would not warrant
such a thorough treatment in practice. Usually, we will have a number of data points
and a number of parameters to estimate, and the data will come from a number of
participants. Nevertheless, the principles just outlined extend to these cases. In the case
where we have a number of data points in a data vector y, if we assume that the data
points are independent, then we can follow Equation 4.1 and calculate a joint likelihood
by multiplying together the likelihoods for individual observations, just as we multiply
joint probabilities together to obtain a joint probability (Equation 4.4). That is,

L(θ |y) =
k∏

L(θ |yk), (4.10)

where k indexes the individual observations. We can then reconceptualize Figure 4.5 as
plotting the joint probability p(y|m) on the vertical axis. Indeed, the binomial function
already does this, by working out the probability for a number of trials. If participants
make a discrete binary response on each trial, each response can be described by the
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94 Maximum Likelihood Parameter Estimation

Bernoulli distribution f (k|p) = pk(1 − p)1−k, where k is either 0 or 1. The binomial
function generalized this function to represent the joint probability of outcomes (num-
bers of heads and tails) from a set of trials; conversely, the Bernoulli distribution is
obtained in R by using the binomial function dbinom, but with N = 1.

What about the case where we have data from multiple participants? Can we obtain
a joint likelihood across participants in a similar fashion? The short answer is yes.
However, were we to do this, we would be making the strong assumption that the
participants could be jointly characterized by a single set of parameter values; that
is, we would assume that there is no variability between participants except for that
introduced by sampling variability within each participant. Instead, we would usually
want to account for individual differences in parameters when fitting the model to data.
This is an involved topic, and we defer examination of this issue to Chapter 5.

Not only will we usually have multiple data points, we will also usually have multiple
parameters. This does not affect our likelihood calculations, but does mean that we
should be clear about our conceptualization of such models. In the case where we have
multiple parameters, Figures 4.5 and 4.6 will incorporate a separate dimension for each
parameter. As an example, let’s return to the Wald model that we covered earlier in the
chapter, and in particular panel c in Figure 4.5; as a reminder, this plots out the likelihood
of the Wald parameter m for a fixed, single observation t = 1.5 s. Figure 4.8 develops
this further by plotting the joint likelihood for the data vector t = [0.6 0.7 0.9] (all are
response times in seconds from a single participant) as a function of two parameters of

a
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8

Figure 4.8 The joint likelihood function for the Wald parameters m and a given the data set
t = [0.6 0.7 0.9]. The two dimensions correspond to the two parameters, and the darkness of the
plot indicates the density at that point (darker = greater density).
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4.4 Finding the Maximum Likelihood 95

the Wald model, m and s; the other parameter Ter is fixed to the value of 0. The darkness
of plot shows the value of the likelihood function for different combinations of a and m;
as shown by the key on the right, the darker values correspond to larger likelihoods.
Together, m and a make the parameter vector θ , such that the value plotted is the joint
likelihood L(θ |t), calculated using Equation 4.10.

4.4 Finding the Maximum Likelihood

The likelihood surface in Figure 4.8 (see also panel c of Figure 4.5) plots the likelihood
of a parameter given some data – specifically, L(m, a|t) – for all possible values of m and
a. Often, we are not interested in all these possible values, but simply wish to know those
parameters that give the best fit to the data. That is, we wish to find those parameters with
the highest likelihood, known as maximum likelihood parameter estimates. Maximum
likelihood (ML) estimation is a modal method: we are looking for the mode (i.e., peak)
of the likelihood function.

One way to find the maximum would be to plot likelihood surfaces such as those in
Figures 4.5 and 4.8, and identify that combination of parameters that gives the highest
point on the surface (e.g., Eliason 1993). However, this would be an exhaustive and
inefficient strategy, and would certainly be impractical when more than a few free
parameters need to be estimated. As discussed in Chapter 3, a more practical method is
to use an algorithm such as the Simplex algorithm of Nelder and Mead (1965) to search
the parameter space for the best-fitting parameters. Indeed, all the methods discussed in
Chapter 3 apply directly to maximum likelihood estimation.

One caveat on using the routines discussed in Chapter 3 is that they are geared toward
minimization (rather than maximization), meaning that we will need to reverse the sign
on the likelihood when returning that value to the optimization function. In fact, there
are a few other changes we can make to the likelihoods to follow convention, and to
make our job of fitting the data easier.

One convention usually adopted is to measure log likelihoods by taking the natural
log, ln, of the likelihood (i.e., the log function in R). There are a number of rea-
sons why this makes estimation and communication easier. The first is that many of
the probability densities we wish to specify in psychology come from the exponential
family of probability distributions. These include probability mass functions such as
the binomial, the multinomial, and the Poisson – and probability density functions such
as the exponential, the normal/Gaussian, the gamma, and the Weibull. The log and the
exponential have a special relationship: they are inverse functions. That is, the log and
the exponential cancel out each other: ln (exp (x)) = exp (ln (x)) = x. One consequence
is that any parts of a probability function that are encapsulated in an exponential function
are unpacked; this makes them easier to read and understand, and can also have the
pleasant result of revealing a polynomial relationship between parameters of interest
and the log-likelihood, making minimization easier. The natural log is also useful for
turning products into sums:
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96 Maximum Likelihood Parameter Estimation

ln
K∏

k=1

f (k) =
K∑

k=1

ln f (k). (4.11)

Similarly, the log turns division into subtraction. As well as being useful for simplifying
likelihood functions (as we will see shortly), this deals with a nasty problem: the likeli-
hood for a large number of observations can sometimes go outside the range of possible
values that can be represented on a modern computer, since each extra observation
multiplies the likelihood by a value usually much larger or smaller than one. The log
acts to compress the values and keep them in reasonable ranges. The log also makes
combining information across observations or participants easier, as we can simply
add the log-likelihoods from independent observations or participants to obtain a joint
log-likelihood:

ln L(θ |y) =
K∑

k=1

ln L(θ |yk), (4.12)

(cf. Equation 4.10), where k might index observations (in order to obtain a sum across
observations for a single participant) or participants (in order to obtain a joint – that is,
summed – log-likelihood for all participants).

As an example of several of these advantages of log-likelihoods, consider the normal
distribution, the familiar bell-shaped probability density usually assumed as the distri-
bution of residuals:

p(y|μ, σ) = 1√
2πσ 2

exp

(
− (y − μ)2

2σ 2

)
. (4.13)

Taking this as our likelihood function L(μ, σ |y), we can obtain the following log-
likelihood function:

ln L(μ, σ |y) = ln(1)− ln(
√

2πσ 2)− (y − μ)2
2σ 2

. (4.14)

Whether attempting to solve this analytically, or using an algorithm such as Simplex (see
Chapter 3), expressing things in this manner makes it easier to read the equation, and
see cases where we could cancel out unneeded calculations. For example, the first term,
ln(1), actually works out to be 0 and so can be discarded. Additionally, if we were not
concerned with estimating σ and only estimating μ, the second term ln(

√
2πσ 2) could

also be removed. This is because this term does not depend on μ, and therefore acts as
a constant in the equation. If we knew the value of σ , this would make μ very easy to
estimate, since only the third and final term would remain, where the log-likelihood is
related to μ by a simple quadratic function. This means that whatever value of μ was
the best estimate for the entire equation would also be the best with the first and second
term as constants.

A final advantage of dealing with log-likelihoods is their statistical interpretation. In
later chapters we will use the value −2 ln L, which is usually referred to as the deviance
of the model, to assess the fit of models and to compare models on the basis of their
fit. Figure 4.9 plots the likelihood, log-likelihood, and deviance as a function of m for
a set of data. The log-likelihood function is less peaked than the likelihood function,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316272503.005
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 02 Aug 2021 at 09:39:26, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316272503.005
https://www.cambridge.org/core


4.4 Finding the Maximum Likelihood 97

m

lik
el

ih
oo

d

0

0.5

1

1.5

2

2.5

3
likelihood

0 2 4 6
m

lo
g 

lik
el

ih
oo

d

–14

–12

–10

–8

–6

–4

–2

0

2
log likelihood

0 2 4 6
m

0 2 4 6

de
vi

an
ce

–5

0

5

10

15

20

25

30
–2 log likelihood (deviance)

Figure 4.9 A likelihood function (left panel), and the corresponding log-likelihood function
(middle) and deviance function (−2 log likelihood; right panel).

and will often take on negative values: the log likelihood will be negative whenever
the likelihood is less than 1. The deviance (right panel) is the same shape as the log-
likelihood function, but is reversed in sign. This means that the best estimate of m is
the maximum of the likelihood and log-likelihood functions, and the minimum of the
deviance function (i.e., that value that is closest to negative infinity).

Since likelihoods often (but not always) take on values less than one, log-likelihoods
will often be negative, meaning that the deviance is often positive due to the minus sign
in −2 ln L. Note that the minus sign also flips the interpretation of the ln L around: a
higher deviance means a worse fit to the data, whereas a more negative ln L corresponds
to a worse fit.

Now let’s look at a worked example of maximum likelihood estimation, continuing
with the GCM example we were looking at earlier. Listing 4.4 gives code to obtain
predicted probabilities PA and PB from a modified version of the GCM. This modified
version, used by Nosofsky (1991), assumes that matches between exemplars and the
categorization stimulus are noisy. Nosofsky (1991) assumed that the matches to indi-
vidual exemplars were normally distributed with standard deviation σ ; here, we make
the simpler (and in this case, formally identical) assumption that the summed similarity
values have normally distributed error added. In addition, Nosofsky (1991) assumed that
stimuli were classified by comparing the difference in summed similarities to a decision
threshold b; if ∑

j∈A

sj −
∑
j∈B

sj > b,

the stimulus is categorized as A, and otherwise as B. This is a deterministic decision
rule (cf. the probabilistic Luce choice rule used above and in Chapter 1), with the
noisiness in the summed similarities introducing noisiness to responding. The response
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98 Maximum Likelihood Parameter Estimation

probabilities are calculated by working out the probability that the difference in
summed similarities will exceed b (given σ ), using the pnorm cumulative distribution
function. Given the normal distribution with mean 0 and with standard deviation σ ,
this works out what proportion of the normal density lies below the difference
in summed similarities minus b. This gives the probability of an A response; this
calculation is given further explanation in the context of signal detection theory in
several later chapters.

1 GCMprednoisy <− f u n c t i o n (probe , exemplars , c , w , ←↩
sigma , b ) {

2

3 # c a l c u l a t e l i k e l i h o d of N A `A ' r e s p o n s e s o u t o f N ←↩
g i v e n p a r a m e t e r c

4 # ' s t im ' i s a s i n g l e v e c t o r r e p r e s e n t i n g t h e ←↩
s t i m u l u s t o be c a t e g o r i s e d

5 # ' exempla r s ' i s a l i s t o f e x e m p l a r s ; t h e f i r s t ←↩
l i s t i t e m i s t h e 'A ' e x e m p l a r s

6 # i n memory , and t h e second l i s t i t em i s t h e `B` ←↩
e x e m p l a r s i n memory

7 # each l i s t i t em i s a m a t r i x i n which t h e rows ←↩
c o r r e s p o n d t o i n d i v i d u a l

8 # e x e m p l a r s
9 # ' c ' i s t h e s c a l i n g p a r a m e t e r , and 'w ' i s a v e c t o r ←↩

g i v i n g w e i g h t i n g f o r each
10 # s t i m u l u s d imens ion ( t h e columns i n ' s t im ' and ←↩

' exempla r s ' )
11

12 # n o t e : f o r a l a r g e number o f c a t e g o r i e s we c o u l d ←↩
use l a p p l y t o loop a c r o s s

13 # t h e c a t e g o r i e s i n t h e l i s t ' exempla r s '
14

15 dist <− l i s t ( )
16 f o r (ex in exemplars ) {
17 dist [ [ l e n g t h (dist ) + 1 ] ] <− a p p l y ( a s . a r r a y (ex ) , 1 ,
18 f u n c t i o n (x ) ←↩

s q r t ( sum (w∗ (x−probe ) ˆ 2 ) ) )
19 }
20

21 sumsim <− u n l i s t ( l a p p l y (dist , f u n c t i o n (a ) ←↩
sum ( exp(−c∗a ) ) ) )

22

23 # t h i s on ly works f o r 2 c a t e g o r i e s
24 # we a l s o s i m p l i f y Nosofsky model i n on ly a p p l y i n g ←↩

n o i s e a t t h e end
25

26 r prob <− c ( 0 , 0 )
27 r prob [ 1 ] <− pnorm (sumsim[1] −sumsim[2] −b , sd=sigma )
28 r prob [ 2 ] <− 1 − r prob [ 1 ]
29 r e t u r n (r prob )
30

31 }

Listing 4.4 R code to implement a version of GCM with a deterministic response rule
(Nosofsky, 1991)
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4.4 Finding the Maximum Likelihood 99

The code in Listing 4.5 fits the modified version of GCM to the data of Nosofsky
(1991). We starting by sourcing Listing 4.4, and loading the library dfoptim, which
provides a routine for simplex fitting with bounds on parameters. We then define a
function GCMutil that calculates the likelihood of parameter vector theta given the
data. Inside the loop, for each of the i test stimuli, the probability of an A response
is calculated, and this is converted to a deviance by taking the log and multiplying
by −2. We also track the predicted probabilities; these are only returned if the func-
tion argument retpreds is TRUE. Note also in this function the method for obtaining
attentional weights in w. The attentional weights must add to 1, and this kind of depen-
dency between parameter values cannot be directly accounted for by the fitting routine.
Accordingly, the parameter values that are actually fitted are conditional weights. The
first weight has value θ(2). The second weight is expressed as a proportion of the
attentional weight left over after allocating some attention to the first dimension, and is
given by (1 − θ(2))θ(3). The third attentional weight is expressed as a proportion of the
attentional weight not yet allocated to the first two dimensions, and the final attentional
weight is set to whatever attentional weight (out of 1) is left over.

1 s o u r c e ( ” GCMprednoisy . R” )
2 l i b r a r y (dfoptim )
3

4 # A f u n c t i o n t o g e t d e v i a n c e from GCM
5 GCMutil <− f u n c t i o n (theta , stim , exemplars , da t a , N , ←↩

retpreds ) {
6 nDat <− l e n g t h ( d a t a )
7 dev <− r e p (NA , nDat )
8 preds <− dev
9

10 c <− theta [ 1 ]
11 w <− theta [ 2 ]
12 w [ 2 ] <− (1−w [ 1 ] ) ∗theta [ 3 ]
13 w [ 3 ] <− (1−sum (w [ 1 : 2 ] ) ) ∗theta [ 4 ]
14 w [ 4 ] <− (1−sum (w [ 1 : 3 ] ) )
15 sigma <− theta [ 5 ]
16 b <− theta [ 6 ]
17

18 f o r (i in 1 :nDat ) {
19 p <− GCMprednoisy (stim [i , ] , exemplars , c , w , ←↩

sigma , b )
20 dev [i ] <− −2∗ l o g ( dbinom ( d a t a [i ] ,size = N ,prob = ←↩

p [ 1 ] ) )
21 preds [i ] <− p [ 1 ]
22 }
23

24 i f (retpreds ) {
25 r e t u r n (preds )
26 } e l s e {
27 r e t u r n ( sum ( dev ) )
28 }
29 }
30

31

32 N <− 2∗40 # t h e r e were 2 r e s p o n s e s p e r f a c e from 40 p p l
33
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100 Maximum Likelihood Parameter Estimation

34 stim <− as . m a t r i x ( r e a d . t a b l e ( ” f a c e S t i m . csv ” , ←↩
sep=” , ” ) )

35

36 exemplars <− l i s t (a=stim [ 1 : 5 , ] , b= stim [ 6 : 1 0 , ] )
37

38 d a t a <− scan ( f i l e =” f a c e s D a t a L e a r n e r s . t x t ” )
39 d a t a <− c e i l i n g ( d a t a ∗N )
40

41 bestfit <− 10000
42

43 f o r (w1 in c ( 0 . 2 5 , 0 . 5 , 0 . 7 5 ) ) {
44 f o r (w2 in c ( 0 . 2 5 , 0 . 5 , 0 . 7 5 ) ) {
45 f o r (w3 in c ( 0 . 2 5 , 0 . 5 , 0 . 7 5 ) ) {
46 p r i n t ( c (w1 ,w2 ,w3 ) )
47 fitres <− nmkb ( p a r =c ( 1 ,w1 ,w2 ,w3 , 1 , 0 . 2 ) ,
48 fn = f u n c t i o n (theta )

GCMutil (theta ,stim ,exemplars , da t a , N , ←↩
FALSE ) ,

49 l ower =c ( 0 , 0 , 0 , 0 , 0 , −5 ) ,
50 uppe r =c ( 1 0 , 1 , 1 , 1 , 1 0 , 5 ) ,
51 c o n t r o l = l i s t ( t r a c e =0) )
52 p r i n t (fitres )
53 i f (fitres$value<bestfit ) {
54 bestres <− fitres
55 bestfit <− fitres$value
56 }
57 }
58 }
59 }
60

61

62 preds <− GCMutil (bestres$ par ,stim ,exemplars , da t a , N , ←↩
TRUE )

63

64 pdf ( f i l e =” GCMfits . pdf ” , width=5 , height=5)
65 p l o t (preds , d a t a /N ,
66 xlab=” Data ” , ylab=” P r e d i c t i o n s ” )
67 dev . o f f ( )
68

69 bestres
70 theta <− bestres$ p a r
71 w <− theta [ 2 ]
72 w [ 2 ] <− (1−w [ 1 ] ) ∗theta [ 3 ]
73 w [ 3 ] <− (1−sum (w [ 1 : 2 ] ) ) ∗theta [ 4 ]
74 w [ 4 ] <− (1−sum (w [ 1 : 3 ] ) )
75 p r i n t (w )

Listing 4.5 R code to fit the modified version of the GCM to some data.

Much of the code in Listing 4.5 is familiar from Listing 4.2. This code only fits
the data from a subset of individuals identified by Nosofsky (1991) as learners: those
who were better able to learn the category structure. Lines 43 to 59 loop across a
number of starting points, and for each starting point using the nmkb function to perform
parameter estimation via Nelder-Mead optimization. The nmkb function allows us to
place bounds on the parameter values, and we constrain the three free attentional weights
to lie between 0 and 1, as well as putting a lower bound of 0 on c and σ . The latter part
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Figure 4.10 A scatterplot between the individual data points (observed proportion A responses for
the 34 faces) and the predicted probabilities from GCM under the maximum likelihood
parameter estimates.

of the inner loop keeps track of the best solution, giving us a good chance of finding
the global minimum. The code after the loop does some plotting and printing of the
estimated solution, including “unpacking” the parameters representing the dimensional
weights to put them back in their original co-ordinates (following the transform inside
the GCMutil function).

Figure 4.10 shows that the model gives a good account of the data, with the predicted
probabilities nicely corresponding to the observed probabilities. The maximum likeli-
hood parameter estimates are c = 2.55, w1 = 0.37, w2 = 0.005, w3 = 0.61, w4 = 0.01,
and b = 0.079. These parameter values differ from those obtained by Nosofsky (1991),
most likely because Nosofsky also fit recognition memory data for the same stimuli
and constrained some parameters to be equal across recognition and categorization.
Nonetheless, one clear feature of the estimates is that participants pay most attention
to only two of the stimulus dimensions. It turns out this is optimal for the task, as
the categorization structure is such that those dimensions give the greatest separation
between exemplars from the two categories; see pages 10–11 of Nosofsky (1991).

4.5 Properties of Maximum Likelihood Estimators

Maximum likelihood estimation has a firm footing in statistical theory. As a conse-
quence, ML parameter estimates have some desirable properties that rely on a few easily
met assumptions about the regularity of the likelihood function, such that it is fully
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continuous, and that all parameters are identifiable (essentially, the likelihood function
is not flat with respect to a particular parameter; see Chapter 10). We point out a few of
these features below. For more on the regularity conditions on which these properties
rely, and other properties of ML estimators we do not discuss below (see Spanos, 1999).

One key feature of ML estimators is that they are sufficient. This means that given a
statistical model (e.g., the Wald distribution) and given the parameter θ we are trying
to estimate (e.g., m in the Wald), the ML estimate of θ contains all information that
the sample provides about θ . The likelihood function is minimally sufficient meaning
that we can only lose information about θ by using some other estimator that is not
equivalent to the likelihood estimator (Fisher, 1922; Pawitan, 2001).

Another useful property of maximum likelihood estimates is that of parameterization
invariance: if we apply some transformation function g to a parameter, then finding
the maximum likelihood estimate of the transformed variable, g(θ), is equivalent to
first finding the ML estimate of θ and then applying the transform g (DeGroot, 1989;
Spanos, 1999). Transforming parameters can be appropriate when a model is easier to
understand in one formulation, but easier to implement and fit to data in another. As an
example, Farrell and Ludwig (2008) reparameterized the exponential component of the
ex-Gaussian distribution (measured by τ ) with a new parameter λ = 1/τ , to facilitate
comparison of MLE with a Bayesian approach to estimate response time distributions,
under which the inverse transform of τ facilitates combining likelihoods with prior
probabilities. Parameterization invariance allowed Farrell and Ludwig (2008) to find
the MLE of λ, and then take the inverse of this estimate to give the MLE for the original
parameter τ .

Two additional and popular properties of ML estimators are those of consistency and
efficiency (Eliason, 1993; Severini, 2000). Consistency means that as we collect larger
and larger samples, the probability that the difference between the “real” parameter
value and the estimated value is larger than some small arbitrary value approaches zero;
in other words, our estimates get more accurate on average as our sample size increases.
Efficiency means that, given an estimator that has a particular consistency, ML estima-
tion will deliver the least variable parameter estimates. ML estimates are asymptotically
normally distributed; that is, the more data we have, the closer the likelihood function
will approximate a normal distribution. We will make good use of this property as an
assumption for a number of methods outlined in Chapters 10 and 11.

One property that ML estimators do not in general possess is that of unbiasedness
(Edwards, 1992; Spanos, 1999). That is, if we generate a number of random samples
from a model with a known single parameter, and estimate that parameter (using maxi-
mum likelihood estimation) for the individual samples, we may find that the average of
the estimated parameters deviates from the known value in the generating model (bias
and variance are discussed further in Chapter 10). In practice, this is of little concern,
as any biases will tend to be drowned out by variability in estimates between samples,
such that ML estimators can be treated as effectively unbiased for most purposes. The
property of consistency also means that ML estimates will behave more like unbiased
estimates as sample size increases (Eliason, 1993). Additionally, it has been argued
that requiring estimates to be strictly unbiased can lead to a loss of properties like
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parameterization invariance, and to unusual parameter behavior for specific samples
(Pawitan, 2001).

One other note of caution is that although ML estimates are efficient, they tend to
be overdispersed. Imagine a case where we want to examine the variability of some
parameter in a population (for example, some measure of processing speed, such as
drift rate in the diffusion model of response times: Schmiedek et al., 2007). From
simulation studies, we know that the ML estimates of that parameter will tend to be
more variable between individuals than the known variability in that parameter (e.g.,
Farrell and Ludwig, 2008; Rouder et al., 2005). This has led to the use of modeling
methods that constrain the variability in parameters by employing a hierarchical mod-
eling structure that provides some top-down constraints on the parameter estimates for
individual participants; Chapter 9 is dedicated to exploring these methods.

Finally, ML estimation is so popular because it allows us to systematically compare
different models on their fit to the data, and use such comparisons to make inferences
about the psychological mechanisms or representations in the models’ domain of appli-
cation. This process of model comparison and drawing inferences from models based
on MLE is the topic of Chapter 10.

4.6 In Vivo

Likelihood: A Halfway House?

Eric-Jan Wagenmakers
(University of Amsterdam)

It was a rainy Thursday afternoon in Amsterdam, almost 20 years ago. On that afternoon,
in a small office on the 10th floor of an unattractive university building, I asked quanti-
tative psychologist Conor Dolan an innocent question: “What is likelihood?” As Conor
patiently answered my question, I had this funny, tingling feeling that you get when
someone explains a new concept and you know you are on the brink of understanding
something beautiful.

Even 20 years later, this episode still upsets me. Apparently it is possible to go through
high school, complete a four-year psychology degree filled with methodology courses,
and finish the first year of graduate school all without the concept of likelihood coming
up even once. This is a scandal. The famous statistician John Tukey once remarked that,
“The collective noun for a group of statisticians is a quarrel.” In other words, statisticians
do not agree on anything, almost as a matter of principle. Yet if there is a single statistical
concept whose importance is widely recognized, it is likelihood.

Although Conor’s explanation unlocked the door to statistics that made sense, I man-
aged not to pass through that door until four years later. At that time, Simon Farrell (the
name should ring a bell) and I were post-docs in the lab of Roger Ratcliff in Evanston, a
suburb of Chicago. Perhaps it was because of Roger’s laissez-faire style of advising, but
at some point Simon and I started to invest serious time and effort in books that were
completely irrelevant to our work. One of the books we both enjoyed was by Richard
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Royall, Statistical Evidence: A Likelihood Paradigm. And this is when I passed through
the door and my fascination with statistics started in earnest.

The idea that likelihood is key is formalized in the so-called likelihood principle.
If you want to learn more about the likelihood principle I recommend – surprise,
surprise – the 1988 book The Likelihood Principle by Berger and Wolpert. A strong
candidate for the award of “worst typeset book in history,” the content itself is
fascinating and at times fun. As outlined in the book (p. 19), the likelihood principle
states, “All the information about θ [the parameter in a statistical model] obtainable
from an experiment is contained in the likelihood function for θ given x [the observed
data]. Two likelihood functions for θ (from the same or different experiments) contain
the same information about θ if they are proportional to one another.” The likelihood
principle was first proposed by Birnbaum in 1962, but mention of it can still chase
statisticians up trees.

The likelihood principle remains contentious because it is intuitive, it can be derived
from simpler principles that are not contentious, and because it completely contraindi-
cates the use of popular classical procedures such as p-values and confidence inter-
vals. According to the likelihood principle, all that matters are the data that have been
observed. Data that might have been observed, but were not, are deemed informationally
irrelevant. But this viewpoint runs counter to classical dogma, where procedures are
designed to have good performance in the long run, that is, averaged across repeated
experiments – in other words, for data that could have been observed but were not.

In a discussion of the Birnbaum article, Bayesian statistician Jimmy Savage predicted
that “once the likelihood principle is widely recognized, people will not long stop at
that halfway house but will go forward and accept the implications of personalistic
probability for statistics.” Now that I am a devout Bayesian myself, I no longer view the
likelihood principle as special. The likelihood principle follows directly from Bayesian
reasoning, and when you violate the likelihood principle then bad things may happen
(compelling examples are presented in the Berger & Wolpert book). Nevertheless, some
Bayesian prior distributions are constructed based on hypothetical data and as such they
violate the likelihood principle. Compared to the massive violations that are inherent
to the classical paradigm, the Bayesian violations are usually considered to be of minor
importance. Practical people accept that armed robbery is different from failing to return
excess money at a supermarket checkout counter.

My faith in Bayesian inference, it is an oaken staff. Nevertheless, I still use likelihood
and maximum likelihood. For instance, when Bayesian models fail to converge, the root
cause may be the shape of the likelihood. And I use maximum likelihood when all I need
is a quick and dirty idea of the general location of the posterior distribution. But when
the going gets tough, and modeling becomes more complex and challenging, then there
is simply no alternative to a full Bayesian treatment.

In sum, likelihood is a key concept. Without it, one is completely blind. Appreciation
of likelihood and the likelihood principle partially opens one eye. Complete clarity of
vision, however, requires the application of Bayes theorem, in which likelihood features
as an important component.
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