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Semi-Supervised Learning



Semi-Supervised Learning
• Supervised classifiers learn from labelled data.

• However, annotating data can be time consuming and expensive.

• In practice wemay have a mix of labelled (i.e. supervised) and unlabelled data (i.e.
unsupervised) available to us.

• The goal of semi‑supervised learning is to train models with both labelled and
unlabelled data.
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Semi-Supervised Setting
• In semi‑supervised learning we have labelled and unlabelled data.

• Labelled data: Dl = {(xn, yn)}Nl
n=1

• Unlabelled data: Du = {xn}Nu
n=1

• In practice Nu >> Nl, i.e. we have more unlabelled data than labelled data.
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Comparing the Different Problem Settings
Supervised Learning

Dl = {(xn, yn)}Nl
n=1

Unsupervised Learning

Du = {xn}Nu
n=1

Semi-Supervised Learning

D = {(xn, yn)}Nl
n=1 ∪ {xn}Nu

n=1
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Semi-Supervised Example
• Here we have a binary classification problemwith four datapoints.
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Semi-Supervised Example
• The unlabelled data indicates structure that is not captured by the previous classifier.

 

 

 

 

 

 



RealWorld Instances of Semi-Supervised Learning
• In speech recognition is may be easy to obtain large quantities of unlabelled audio

data but very time consuming to pay annotators to manually label all of it.

• In medical settings, it may be relatively easy to collect data from patients (e.g. via
x‑ray, CT scan, etc.), but very challenging to get doctors to look at the data and
provide their expert opinion.

• Plus manymore ...
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Semi-Supervised Assumptions
Most semi‑supervised approaches make at least one of the following assumptions.

Smoothness Assumption
Points that are close to each other are more likely to share a target value (e.g. the same
class label).

Cluster Assumption
The data tend to form discrete clusters, and points in the same cluster are more likely to
share a target.

Manifold Assumption
The data lie approximately on amanifold of much lower dimension than the input
space.
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Self-Training
• Self‑training is one conceptually simple

approach for semi‑supervised learning.

• The central idea is to use the model fθ
itself to make predictions on unlabelled
data.

• We then add high confident predictions
(fθ (xu) > 𝜏) to the labelled training set.

• We refer to the labels ŷu derived from
predictions as pseudo labels.

Require: labelled dataDl, unlabelled data
Du, number steps N, confidence
threshold 𝜏

1: fθ ← train_model(Dl)
2: for n← 1 to N do
3: Sample xu ∈ Du
4: if fθ (xu) > 𝜏 then
5: Dl ← Dl ∪ (xu, ŷu)
6: Du ← Du \ xu
7: fθ ← train_model(Dl)

8: return fθ

 

 

 

 



Self-Training
• Self‑training is one conceptually simple

approach for semi‑supervised learning.

• The central idea is to use the model fθ
itself to make predictions on unlabelled
data.

• We then add high confident predictions
(fθ (xu) > 𝜏) to the labelled training set.

• We refer to the labels ŷu derived from
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6: Du ← Du \ xu
7: fθ ← train_model(Dl)

8: return fθ

 

 

 

 



Self-Training
• Self‑training is one conceptually simple

approach for semi‑supervised learning.

• The central idea is to use the model fθ
itself to make predictions on unlabelled
data.

• We then add high confident predictions
(fθ (xu) > 𝜏) to the labelled training set.

• We refer to the labels ŷu derived from
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predictions as pseudo labels.

Require: labelled dataDl, unlabelled data
Du, number steps N, confidence
threshold 𝜏

1: fθ ← train_model(Dl)
2: for n← 1 to N do
3: Sample xu ∈ Du

4: if fθ (xu) > 𝜏 then
5: Dl ← Dl ∪ (xu, ŷu)
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predictions as pseudo labels.

Require: labelled dataDl, unlabelled data
Du, number steps N, confidence
threshold 𝜏

1: fθ ← train_model(Dl)
2: for n← 1 to N do
3: Sample xu ∈ Du
4: if fθ (xu) > 𝜏 then
5: Dl ← Dl ∪ (xu, ŷu)
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Self-Training Limitations
• One obvious flaw with self‑training is that if the model generates incorrect

predictions for unlabelled data it is retrained on these incorrect predictions.

• If this keeps repeating, the model will become progressively worse.

• This problem is referred to as confirmation bias.
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EntropyMinimisation
• Self‑training has the implicit effect of encouraging the model to output low entropy

(i.e. high‑confidence) predictions.

• Alternatively, we could add an additional loss for the unlabelled data, e.g. directly
encourage low entropyLu = −f𝜃 (xu) log(f𝜃 (xu)) − (1 − f𝜃 (xu)) log(1 − f𝜃 (xu)).

 

 

 

 

Figures taken from Probabilistic Machine Learning by Kevin Murphy.
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Label Propagation
• Label Propagation is a semi‑supervised approach that exploits the smoothness

assumption to assign labels to unlabelled data.

• It constructs a graph, where the datapoints are nodes, and the edges between them
represent their similarity.

• Known labels are ‘propagated‘ across the edges of the graph from labelled nodes to
unlabelled ones.

• When complete, each unlabelled datapoint has an estimated label which can be then
be used for training any supervised learning method.
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Label Propagation Example
1. As input we have labelled (here blue or red) and

unlabelled (here white) data.

2. We define a similarity measure between pairs of
datapoints. Here datapoints that are closer in feature
space are determined to bemore similar.

3. Finally we iteratively propagate labels from the labelled to
the unlabelled nodes.
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Summary
• Semi‑supervised learning is a training paradigm that allows us to make use of both

labelled and unlabelled data.

• We have to make some assumptions about the underlying data distribution e.g.
smoothness.

• There are many different techniques in the literature. Some are general purpose,
others are specific to specific types of models.
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Active Learning



Active Learning
• In the case of semi‑supervised learning we relied on algorithmic approaches to either

infer missing labels or to exploit the data structure to learn more effective models.

• In contrast, in active learning we interactively query an annotator (i.e. oracle) who
provides information about unlabelled data.

Goal
Learn a model that generalises well with the smallest number of queries to the
annotator.

Assumption
Not all datapoints are equally informative, i.e. some are more useful than others.
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Active Learning Loop
• In active learning we iteratively query the oracle labeller to get labels for unlabelled

data.
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Query Selection
Multiple different heuristic query selection strategies have been proposed in the
literature.

• Random
◦ Trivial baseline where we just randomly select queries from the unlabelled set without

replacement.
• Uncertainty sampling
◦ Choose the query that the model is most uncertain about, e.g. close to a decision

boundary.
• Query by committee
◦ Train an ensemble of models and choose the query that has most disagreement from the

the models in the ensemble.
• Expectedmodel change
◦ Choose the query that would most change the current model if added to the training set.

Expensive to compute.
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Uncertainty Sampling Example
• On the right we see labelled and

unlabelled data for a binary
classification task.

• We first fit our model (here a linear
classifier) to the labelled data.

• We choose the query to be labelled that
the model is most uncertain about. For a
logistic regression classifier it would the
datapoint closest to the decision
boundary, i.e. P(yu |xu) ≈ 0.5.
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Uncertainty Sampling Example
• We add the new datapoint to the

labelled set and retrain the classifier.

• We then repeat the process by selecting
the next query to be labelled.
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Active Learning Result
• Here we show an example of active learning applied to multiclass classification.
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Figures adapted fromMac Aodha et al. CVPR 2014.
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Figures adapted fromMac Aodha et al. CVPR 2014.

 

 

 

 



Summary
• In active learning we interactively query the annotator(s) during training.

• The aim is to obtain ‘good’ performance with aminimal number of training examples.

• There are several different families of query selection strategies available. The choice
of which to use will depend on the specific use case.

• Active learning pipelines are often deployed in practical applications as data
annotation can be expensive.
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