

Applied Machine Learning (AML)

Class Starting at 4:10pm

Oisin Mac Aodha • Siddharth N.

Applied Machine Learning

Week 8: Clustering and Non-Linear Dimensionality Reduction

This slides will be made available on the project website after the class. This session will be recorded.

Overview

- 1) Outline your tasks this for week
- 2) Discussion of Week 7's topics

Exam

- Thu, 12th Dec 2024 [14:30-16:30]
- McEwan Hall [Foyer Rooms]
 - o split by surname; check personalised timetable
- On campus and will be closed book

INFR11211: Applied Machine Learning

Venue

This exam is split over multiple locations by surname (please check your personalised timetable):

McEwan Hall

Date: Thursday, 12th December 2024

Time: 2:30 p.m. to 4:30 p.m.

Duration: 2:00

McEwan Hall - Foyer Room 1 & 2 (Enter via the Pavilion)

Date: Thursday, 12th December 2024

Time: 2:30 p.m. to 4:30 p.m.

Duration: 2:00

McEwan Hall - Foyer Room 3 & 4 (Enter via the Pavilion)

Date: Thursday, 12th December 2024

Time: 2:30 p.m. to 4:30 p.m.

Duration: 2:00

- Format: 2/3 questions as in IAML (INFR10069) before 2020
- Exams in 2020 and 2121 were "open book" less relevant
- Past exam papers are available here:

https://exampapers.ed.ac.uk

We do not provide past exam solutions

Coursework Submission

- Thu, 21st Nov 2024 12:00
- Instructions for submission by early next week [week 9]
 - Only report due on 21st
 - Supplementary materials [report LaTeX + code + Readme]
 (submit at later date details TBA)
- NOTE: Lateness & Extension Policy
 - No deadline extensions allowed on any account [Rule 2]
 - See course information page for further details

Week 8: Your tasks for this week

- 1) Complete Tutorial 3
- 2) Watch videos for week 8
 - Recommender Systems and Neural Networks
- 3) Ask questions on Piazza if stuck
- 4) Continue working on the coursework
- 5) Start Lab 4 which takes places next week link in week 9

K-Means Example

Consider the following dataset where every instance is represented by a single numeric attribute: $\{-4, -3 - 2, 0, 3, 5, 8\}$. Make a sketch plot of the data.

Run the K-Means clustering algorithm on the data above. Assume K=2 and that the starting means are set as $\mu_1=-6$, and $\mu_2=5$. List the instances in each cluster after the first and second iteration. After how many iterations would you stop the algorithm?

Plotted on a line, the data points would look like this:

Estimating Number of Clusters

Bic = Kley N

How many clusters does your data have?

- Get (*K*) from class labels (e.g. digits 0...9)
- Find an "appropriate" K: optimise for V
 - Run K-Means for K = 1, 2, ...; choose K with smallest V
 - **Issue:** What is V when K = N?
 - choose best K on validation data
 - Choose visually from a *elbow* plot
 - point that maximises the 2^{nd} derivative of V

Intrinsic Evaluation: Supervised

Key Idea: Evaluate relationship between *pairs* of data points $\boldsymbol{x}_l, \, \boldsymbol{x}_m$

Rand Index (RI)

- $+: x_l, x_m$ are in the same cluster
- ullet $-: oldsymbol{x}_l, oldsymbol{x}_m$ are in different clusters

$$RI = \frac{TP + TN}{TP + TN + FP + FN}$$
$$= Accuracy!$$

Intrinsic Evaluation: Supervised

Issue: Expected value of RI of two *random* partitions $\neq 0$ (or any constant)

Adjusted Rand Index (ARI)

$$N_{ij} = |\boldsymbol{r}_i \cap \boldsymbol{c}_j| \quad {N \choose 2} = \frac{N(N-1)}{2}$$

$$\mathsf{RI} = \sum_{ij} \binom{N_{ij}}{2}$$

Expected RI =
$$\frac{1}{\binom{N}{2}} \left[\sum_{v} \binom{a_v}{2} \cdot \sum_{u} \binom{b_u}{2} \right]$$

$$\operatorname{Max} \operatorname{RI} = \frac{1}{2} \left[\sum_{v} \binom{a_v}{2} + \sum_{u} \binom{b_u}{2} \right]$$

$$ARI = \frac{RI - Expected RI}{Max RI - Expected RI}$$

Consider the following dataset, where every instance is represented by a single numeric attribute: $\{-3.5, -3, -2, 0, 3, 7, 12\}$

- Run the single-link clustering algorithm on the dataset above until two clusters remain. List the instances in each of the two clusters.
- Run the complete-link clustering algorithm on the dataset above until two clusters remain. List the instances in each of the two clusters.
- Provide a qualitative description of the difference between the two clusterings.

Wed demo

- https://pair-code.github.io/understanding-umap/
- https://jlmelville.github.io/uwot/umap-examples.html
- https://distill.pub/2016/misread-tsne/

Visualisation with t-SNE and UMAP

- Hyperparameters really matter
 - *t*-SNE: perplexity
 - UMAP: # neighbours, minimum distance
- Cluster sizes do not mean anything
- Cluster distances may not mean anything
- Seeing patterns in randomness!

Can be like tasseography—reading tea leaves!

