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Introduction to Neural Networks



Recap - Linear Classifiers
• Logistic regression =

linear weights + logistic function

p(y = 1|x) = 𝜎 (w⊺x + b)
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Classifying Non-Linear Data
• There is no linear classifier that will

separate the data on the right given
these 2D input features.
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Classifying Non-Linear Data
• There is no linear classifier that will

separate the data on the right given
these 2D input features.

• In order to classify it, we can:
◦ Use an alternative classifier that can

generate non‑linear decision boundaries.
◦ Transform our input features so that they

are linearly separable.
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Neural Networks
• The performance of the classification methods we have explored depend on the

input features, i.e. having a good ‘representation‘ of the problem.

• If we do not have good features, manymethods will not be effective, e.g. linear
classifiers.

• What if we could learn the features from the input data?

• This is what neural networks attempt to do.

• We can think of them as a linear method, where we learn the features.
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Neural Network Intuition
• Neural networks allow us to learn more effective features from the raw input data.

• We can think of them as functions that transform our input into something more
useful for our task of interest.
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Biological Neurons
• Neural networks are motivated by aweak analogy to the human brain, hence the

name artificial neural networks.

• Neurons (also known as nerve cells) are electrically excitable cells in the nervous
system that process and transmit information.
• Neurons are the core components of the brain, spinal cord, and nerves of vertebrates.

 

 

Image by BruceBlaus, CC BY 3.0

 

 

 

 



Biological Neurons
• Neural networks are motivated by aweak analogy to the human brain, hence the

name artificial neural networks.
• Neurons (also known as nerve cells) are electrically excitable cells in the nervous

system that process and transmit information.
• Neurons are the core components of the brain, spinal cord, and nerves of vertebrates.

 

 

Image by BruceBlaus, CC BY 3.0
 

 

 

 



Artificial Neurons
• Each artificial neuron is a linear weight vector with a

non‑linear activation function.

• We compute a neuron’s activation as
ŷ = g(w⊺x + b)

• Here, g() is a non‑linear activation function.
• If we used the logistic function this would just be logistic

regression.
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ŷ
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the bias term b here.

 

 

 

 



Artificial Neurons
• Each artificial neuron is a linear weight vector with a

non‑linear activation function.

• We compute a neuron’s activation as
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ŷ = g(w⊺x + b)

• Here, g() is a non‑linear activation function.
• If we used the logistic function this would just be logistic

regression.

x1

x2

…

xD

ŷ
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Artificial Neurons
• We can have multiple neurons

ŷ1 = g(w⊺1 x + b1)
ŷ2 = g(w⊺2 x + b2)

• We can present this using a weightmatrix W and bias
vector b
ŷ = g(Wx + b)
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ŷ = g(Wx + b)

x1

x2

…

xD

ŷ1
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Single Layer Network
• We can connect multiple neurons (i.e. units) together into a directed acyclic graph.

• This results a feed‑forward neural network.

• One of the simplest neural networks is a single layer neural network.
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Single Layer Network
• In a single layer network, we have input units, hidden units, and output units.

• We can represent this function as

ŷ = g2(w⊺2 g1(W1x + b1) + b2)

x1

x2

h11

h12

h13

ŷ
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Multilayer Neural Network
• Individual units in a network are grouped together into layers.

• We can stack multiple layers to form amultilayer network, i.e. a multilayer
perceptron (MLP).

• Here we see a fully connected networkwith three input features, three hidden layers
with four hidden units in each, and two output units.
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Non-Linear Activation Functions
• Recall our expression for the single layer neural network

ŷ = g2(w⊺2 g1(W1x + b1) + b2)

• Onemight ask why do we need a non‑linear activation function g() in g(Wx + b)?

• Any sequence of linear layers can be equivalently represented with a single linear

layer, i.e.

y = W1W2W3x
≜W′x
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Non-Linear Activation Functions - Choices

• Sigmoid i.e. Logistic

𝜎 (z) = 1
1 + exp(−z)

• Hyperbolic tangent

tanh(z) = exp(2z) − 1
exp(2z) + 1

• Rectified linear unit

ReLU(z) = max(z, 0)
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Neural Networks - Expressive Power
• Feed‑forward neural nets with non‑linear activation functions are universal function

approximators, i.e. they can approximate any function arbitrarily well.

• In practice, youmay need an exponentially large network.

• If you can learn any function, this can just result in overfitting.
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Importance of Network Depth
• A fully connected neural network with one hidden layer is a universal function

approximator.

• This means it canmodel any sufficiently smooth function given a suitable number of
hidden units.

• However, both experimental and theoretical work have shown that deeper neural
networks (i.e. ones with more layers) are more effective than shallow ones.

• In deeper networks, later layers can leverage the features learned by earlier ones.
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Non-Linear Classificationwith Neural Networks
• Here we revisit the non‑linear binary

classification problem from earlier.

• Wewill use the following neural network with
two hidden layers:

ŷ = g3(w⊺3 g2(W2g1(W1x + b1) + b2) + b3)

= f(x) = f3(f2(f1(x)))
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Neural Network Example - Input
• Input x x1

x2

 

 

 

 



Neural Network Example - First Hidden Layer
• Input x
• First hidden layer

h1 = g1(W1x + b1)
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Neural Network Example - Second Hidden Layer
• Input x
• First hidden layer

h1 = g1(W1x + b1)
• Second hidden layer

h2 = g2(W2h1 + b2)
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Neural Network Example - Output Layer
• Input x
• First hidden layer

h1 = g1(W1x + b1)
• Second hidden layer

h2 = g2(W2h1 + b2)
• Output

ŷ = g3(w⊺3 h2 + b3)
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Neural Network Example - Output Layer
• Input x
• First hidden layer

h1 = tanh(W1x + b1)
• Second hidden layer

h2 = tanh(W2h1 + b2)
• Output

ŷ = 𝜎 (w⊺3 h2 + b3)
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Transforming Features
Here we see the outputs from each layer of the network.
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Transforming Features
Nowwe can use a linear classifier on the final hidden features.
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Transforming Features
This is the same as previous, but we have colour coded each individual instance.
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Final Neural Network Predictions
• On the right we see the final network

predictions, colour‑coded by predicted
class.

• Note, in this example we defined a
simple, and small, neural network for
ease of visualisation.

• Our network did not successfully classify
all the training data.
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ŷ

 

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
2

 

 

 

 

 



Final Neural Network Predictions
• On the right we see the final network

predictions, colour‑coded by predicted
class.

• Note, in this example we defined a
simple, and small, neural network for
ease of visualisation.

• Our network did not successfully classify
all the training data.

x1

x2

h11

h12

h21

h22

ŷ
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Final Neural Network Predictions
• With a minor change to the structure of

the neural network, we can correctly
classify the training data.

• In the example on the right we increased
the number of hidden units in the first
layer (from two to four).
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Training Neural Networks



Neural Network Parameters
• Recall that a multilayer neural network is a nested set of linear functions with

non‑linear activations.
f(x) = fL(. . . f2(f1(x)))

• Each layer fL has its own weight matrix WL and bias vector bL.

• The concatenation of these terms form the model weights that need to be learned.

θ = (W1, b1,W2, b2, . . . ,WL, bL)
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Training Neural Networks
• The task of training a neural network involves finding the best parameters (i.e.

weights) for each unit.

• Wewill use a loss functionL(θ) to measure the disagreement between the model
prediction f(x) and the ground truth target y.

• During optimisation we will try to find the parameters that minimise the loss.

• Wewill take the gradient of the loss ∇θL and use gradient descent to update the
parameters.
θ ← θ − 𝜂 · ∇θL
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TrainingMultilayer Neural Networks
• Hidden units make optimising the network weights more complicated as we do not

have ground truth targets for them.

• Each hidden activity can affect many output units and can therefore have many
separate effects on the error.

 

 

 

 



Backpropagation
• There is a recursive algorithm for computing the derivatives. It uses the chain rule by

storing some intermediate terms. This is called backpropagation.

• Wemake use of the layered structure of the network to compute the derivatives,
heading backwards from the output layer to the inputs.

Backpropagation Algorithm
• Consists of twomain steps:
◦ A forward pass, in which we compute and store the values at all of the hidden units and

the network output.
◦ A backward pass, in which we calculate the derivatives of each weight, starting at the end

of the network, and reusing the previous computation as wemove towards the start.
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Backpropagation
• We can visualise the computations using a computation graph.

• The nodes represent all the inputs and computed quantities, and the edges
represent which nodes are computed directly as a function of which other nodes 1.
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Chain Rule of Calculus
• Suppose we had two functions u(x) and v(x).
• Then y = u(v(x)) is a function of a function.

• The chain rule of calculus gives us a way to expresses the derivative of the
composition of two differentiable functions u(x) and v(x) in terms of their
derivatives.

• For example, if we substitute s = v(x), thus y = u(s), and

dy
dx =

dy
ds

ds
dx
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Backpropagation - Forward Pass
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ŷ L

y

Forward Pass

a = W1x + b1

h = g(a)
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2 | |ŷ − y| |2

Backward Pass

𝜕L
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𝜕ŷ

𝜕ŷ
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ŷ = W2h + b2

L =
1
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𝜕ŷ

𝜕ŷ
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𝜕ŷ

𝜕L
𝜕h =

𝜕L
𝜕ŷ
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𝜕ŷ

𝜕L
𝜕h =

𝜕L
𝜕ŷ
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𝜕ŷ
𝜕h

𝜕L
𝜕a =

𝜕L
𝜕h

𝜕h
𝜕a

𝜕L
𝜕W1

=
𝜕L
𝜕a

𝜕a
𝜕W1

=
𝜕L
𝜕a x⊺

𝜕L
𝜕b1

=
𝜕L
𝜕a

𝜕a
𝜕b1

=
𝜕L
𝜕a

 

 

 

 



Convergence of Neural Networks
• For logistic regression, the loss function is conveniently convex. A convex function

has just one minimum.

• Multilayer neural networks are non‑convex, and gradient descent may get stuck in
local minima during training and never find the global optimum.

• In practice this is not necessarily an issue and we can still apply gradient‑based
methods and can obtain good solutions for many practical problems of interest.

 

 

 

 



Convergence of Neural Networks
• For logistic regression, the loss function is conveniently convex. A convex function

has just one minimum.

• Multilayer neural networks are non‑convex, and gradient descent may get stuck in
local minima during training and never find the global optimum.

• In practice this is not necessarily an issue and we can still apply gradient‑based
methods and can obtain good solutions for many practical problems of interest.

 

 

 

 



Hyperparameters
Network Structure
• There are several elements of the network that you can change e.g.
◦ The number of hidden layers.
◦ The number of units in each hidden layer.
◦ The type of non‑linear activation function e.g. ReLU, sigmoid, ...

Training Schedule
• There also are several aspects of the training procedure that can be changed e.g.
◦ The learning rate.
◦ The type of optimiser e.g. standard gradient descent, ...
◦ How the weights are initialised.
◦ When to stop training.
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Automatic Differentiation
• The backpropagation algorithm, which can be used to compute the gradient of a

loss function applied to the output of the network wrt the parameters in each layer.

• This gradient can then be used with any gradient‑based optimisation, e.g. gradient
descent.

• Manually computing these gradients for anything but small toy problems is too time
consuming.

• Instead, we canmake use automatic differentiation (or autodiff). This is a set of
automatic techniques to evaluate the derivative of a function.

• Manymachine learning frameworks have autodiff functionality built in.
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Automatic Differentiation Example
The following is an example of using autodiff for binary logistic regression.

1 import jax.numpy as jnp
2 from jax import grad, nn
3
4 # Define our loss function
5 def nll_loss(X, y, w):
6 pred = nn.sigmoid(X@w)
7 loss_pos = (y==1)*jnp.log(pred)
8 loss_neg = (y==0)*jnp.log(1.0 - pred)
9 loss = -(loss_pos + loss_neg).mean()

10 return loss
11
12
13 # Define our dataset, which has 3 instances
14 # We have already appended a 1.0 to each row of X
15 X = jnp.array([[1.0, 0.5,-0.35],
16 [1.0, -0.1, 0.1],
17 [1.0, -1.2, 1.0]])
18 y = jnp.array([0.0, 0.0, 1.0])
19
20 # This is our initial weight vector w
21 w = jnp.array([0.0, -1.0, 1.0])
22

23 # (i) Compute the gradient manually
24 # Here we use the derived expression
25 manual_grad = (nn.sigmoid(X@w) - y)@X
26 manual_grad *= (1.0/X.shape[0])
27 print(’Manual gradient’, jnp.round(manual_grad, 3))
28
29
30 # (ii) Compute the gradient automatically
31 # Evaluate the loss and compute the gradient
32 loss = nll_loss(X, y, w)
33 w_grad = grad(nll_loss, (2))(X, y, w)
34 print(’Auto gradient ’, jnp.round(w_grad, 3))
35
36
37 # We can take one step of gradient descent
38 learning_rate = 3.0
39 w_update = w - learning_rate*w_grad
40
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Alternative Network Architectures



Images as Tensors
• We can represent images asmatrices, where each entry stores the intensity value of

a given pixel.
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Issues with Fully Connected Neural Networks
• Fully connected networks with high‑dimensional inputs have a lot of model weights.

• This results in a very large number of model weights that have to be learned.

• For example, if our input was an image of size 100 × 100, this would require 10, 000
weights for each hidden unit in the first layer.
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Shift Invariance
• Fully connected networks are sensitive to the position of the signal of interest in an

input image.
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Convolutional Filters
• Constrain each hidden unit to extract features by sharingweights across the input.

• For an image X and K ×K weight matrix W (i.e. a filter) we compute the outputs as

hij = g
( K∑
m=1

K∑
n=1

wm,nxi+m,j+n + b
)

• The output is a feature map, where each entry hij is the local response of the filter
convolved with the image at that location.

• Multiple weight matrices can be used to produce multiple feature maps.
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Convolution
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Convolutional Neural Network - Example
• A Convolutional Neural Network (CNN) consists of learnable convolutional filters and

non‑learnable pooling layers.
• The pooling layers reduce the spatial dimensionality of the feature maps.
• For classification, at the output of the network, we have a fully connected layer

which predicts one of C classes.
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Recurrent Neural Networks
• Amodel for sequence data (e.g. time series).

• Different network architectures and recurrent units exist, e.g. long
short‑term‑memories (LSTMs).

• In a RNN, each input is processed sequentially, one item at a time.

• Past information is retained through past hidden states.
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Recurrent Neural Networks

• In RNNs, the outputs yt are a function of the current input xt and the previous hidden
state ht−1.
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Transformers
• Alternative, andmore recent, approach for modelling sequential data.
• Unlike RNNs, Transformers process the entire input all at once.
◦ Thus training can be performed in parallel.
◦ They are also less susceptible to ‘forgetting’ information from the past, i.e. better suited to

capture long‑range dependencies.

• Transformers have a special type of unit called a self‑attention unit. This is used to
compute similarity scores between inputs in the input sequence.

• They can also be applied to other data types, e.g. images.
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Summary
• Artificial neural networks are a powerful non‑linear modelling tool for classification

and regression.

• They are not biologically plausible models.

• The output of the hidden units are a new representation of the original input data.
This can be interpreted as learned features.

• Training makes use of the backpropagation algorithm to compute derivatives.

• Beyond standard fully connected networks, alternative architectures exist for
learning from structured input data (e.g. images, audio, text, ...).
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