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Introduction to Neural Networks




Recap - Linear Classifiers

® | ogistic regression =
linear weights + logistic function

p(y=1|x) = oc(wTx+ b)
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Classifying Non-Linear Data

® Thereis no linear classifier that will

separate the data on the right given 15

these 2D input features.
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Classifying Non-Linear Data

® There s no linear classifier that will
separate the data on the right given
these 2D input features.




Classifying Non-Linear Data

® Thereis no linear classifier that will
separate the data on the right given

these 2D input features.

® |n order to classify it, we can:
o Use an alternative classifier that can
generate non-linear decision boundaries.
o Transform our input features so that they
are linearly separable.
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Neural Networks

® The performance of the classification methods we have explored depend on the
input features, i.e. having a good ‘representation‘ of the problem.

® [f we do not have good features, many methods will not be effective, e.g. linear
classifiers.
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Neural Networks

The performance of the classification methods we have explored depend on the
input features, i.e. having a good ‘representation‘ of the problem.

If we do not have good features, many methods will not be effective, e.g. linear
classifiers.

What if we could learn the features from the input data?
This is what neural networks attempt to do.

We can think of them as a linear method, where we learn the features.
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Neural Network Intuition

® Neural networks allow us to learn more effective features from the raw input data.

® \We can think of them as functions that transform our input into something more
useful for our task of interest.

input features
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Biological Neurons

® Neural networks are motivated by a weak analogy to the human brain, hence the
name artificial neural networks.
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Biological Neurons

® Neural networks are motivated by a weak analogy to the human brain, hence the

name artificial neural networks.
® Neurons (also known as nerve cells) are electrically excitable cells in the nervous

system that process and transmit information.
® Neurons are the core components of the brain, spinal cord, and nerves of vertebrates.

Cell body

\/
Nucleus \

Synaptic terminals

- -Axon hillock )
b A,
Endoplasmic

¥g| apparatus
Mitochondrion \\ Dendrite

reticulum
/ % Dendritic branches

& informatics Image by BruceBlaus, CC BY 3.0



Artificial Neurons

® Each artificial neuron is a linear weight vector with a
non-linear activation function.

® \We compute a neuron’s activation as

y=g(wTx+ b)
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Artificial Neurons
® Each artificial neuron is a linear weight vector with a
non-linear activation function.

® \We compute a neuron’s activation as

y=g(wTx+ b)
® Here, g() is a non-linear activation function.

® |f we used the logistic function this would just be logistic
regression.
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Artificial Neurons
® Each artificial neuron is a linear weight vector with a
non-linear activation function.

® \We compute a neuron’s activation as 0

= g(wTz+b) k@

® Here, g() is a non-linear activation function.

® |f we used the logistic function this would just be logistic
regression.
Note, we are not depicting
the bias term b here.
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Artificial Neurons
® We can have multiple neurons

I = g(w]z+b)
o = g(wj x+ bo)
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Artificial Neurons
® We can have multiple neurons

I = g(w]z+b)
o = g(wj x+ bo)
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Artificial Neurons
® We can have multiple neurons

I =g(w]z+b)
o = g(wy T+ bo)

® We can present this using a weight matrix Wand bias
vector b

y=9g(Wzx+0b)
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Single Layer Network

® \We can connect multiple neurons (i.e. units) together into a directed acyclic graph.

® Thisresults a feed-forward neural network.
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Single Layer Network

® \We can connect multiple neurons (i.e. units) together into a directed acyclic graph.
® This results a feed-forward neural network.

® One of the simplest neural networks is a single layer neural network.
il
5 :
\
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Single Layer Network

® |n asingle layer network, we have units, hidden units, and output units.

% e
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Single Layer Network

® |n asingle layer network, we have units, hidden units, and output units.

® We can represent this function as

I = g2(wy g1 ( Wi+ by) + by)
L e
@0
e
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Multilayer Neural Network

® |ndividual unitsin a network are grouped together into layers.
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Multilayer Neural Network

® |ndividual unitsin a network are grouped together into layers.

® We can stack multiple layers to form a multilayer network, i.e. a multilayer
perceptron (MLP).
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Multilayer Neural Network

® |ndividual unitsin a network are grouped together into layers.
® We can stack multiple layers to form a multilayer network, i.e. a multilayer
perceptron (MLP).

® Here we see a fully connected network with three input features, three hidden layers
with four hidden units in each, and two output units.

==
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Non-Linear Activation Functions

® Recall our expression for the single layer neural network

U= g2(wy g1 (Wi + by) + bo)
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Non-Linear Activation Functions

® Recall our expression for the single layer neural network

U= g2(wy g1 (Wi + by) + bo)

® One might ask why do we need a non-linear activation function ¢() in g( W+ b)?

@ informatics



Non-Linear Activation Functions
® Recall our expression for the single layer neural network

U= g2(wy g1 (Wi + by) + bo)

® One might ask why do we need a non-linear activation function ¢() in g( W+ b)?

® Any sequence of linear layers can be equivalently represented with a single linear

layer, i.e.

y= W1 Wy Wiz
2 We
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Non-Linear Activation Functions - Choices

2 %
1 1
S
= 0
-1 a(2)
tanh(2)
ReLU(2)
-2 T t -
-4 -2 0 2
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Non-Linear Activation Functions - Choices

® Sigmoid i.e. Logistic 9 .
1
0(2) = ————
1 +exp(—2) 14
3 0 7//
>
-1 1 — o(»
tanh(z)
ReLU(2)
= - - -
-4 =2 0 2 4
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Non-Linear Activation Functions - Choices
® Sigmoid i.e. Logistic 9,

1
" 1+exp(—2) 1

7
/

o(2)

® Hyperbolic tangent

9(2)

tanh(z) = exp(22) — 1
exp(2z) +1 -1 — — 0(2)
—— tanh(2)
ReLU(2)
= - - -
-4 -2 0 2 4
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Non-Linear Activation Functions - Choices
® Sigmoid i.e. Logistic 9,

1
" 1+exp(—2) 1

| % _
® Hyperbolic tangent 0 ——’/
exp(22) — 1 /
h(z) = 2~
tanh(2) exp(22) + 1 —_—

o(2)

9(2)

-1 — d(?)
—— tanh(2)
—— RelU(2)
® Rectified linear unit -2 | : ;
—4 -2 0 2 4

RelLU(2) = max(z0)
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Neural Networks - Expressive Power

® Feed-forward neural nets with non-linear activation functions are universal function
approximators, i.e. they can approximate any function arbitrarily well.
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Neural Networks - Expressive Power

® Feed-forward neural nets with non-linear activation functions are universal function
approximators, i.e. they can approximate any function arbitrarily well.

® |n practice, you may need an exponentially large network.

® [fyou can learn any function, this can just result in overfitting.
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Importance of Network Depth

® A fully connected neural network with one hidden layer is a universal function
approximator.

® This means it can model any sufficiently smooth function given a suitable number of
hidden units.
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Importance of Network Depth
® A fully connected neural network with one hidden layer is a universal function
approximator.

® This means it can model any sufficiently smooth function given a suitable number of
hidden units.

® However, both experimental and theoretical work have shown that deeper neural
networks (i.e. ones with more layers) are more effective than shallow ones.

® |n deeper networks, later layers can leverage the features learned by earlier ones.
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Non-Linear Classification with Neural Networks

® Here we revisit the non-linear binary

oD o q 1.5
classification problem from earlier.
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Non-Linear Classification with Neural Networks

® Here we revisit the non-linear binary

classification problem from earlier. '
® We will use the following neural network with L0 KRR,
two hidden layers: : 1
0.51 .;. o
y= 93(w§g2( Wogi (Wix+ by) + ba) + b3) & ool : .:. ';
—0.51 o . st s
—1.04 [
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Non-Linear Classification with Neural Networks

® Here we revisit the non-linear binary

classification problem from earlier. '
® We will use the following neural network with L0 KRR,
two hidden layers: : 1
0.51 .;. o
y= 93(w§g2( Wogi (Wix+ by) + ba) + b3) & ool : .:. ';

—0.51 . * ey et ¢
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Non-Linear Classification with Neural Networks

® Here we revisit the non-linear binary

classification problem from earlier. '
® We will use the following neural network with 104 KRR,
two hidden layers: ) !
0.5 et
i=g3(wig2(Wo(Wiz+by) +b2) +b3) 1 | - p
= f(x) = f3(2(fi(2))) S P I B
—0.54 . ® o0 g 0o
@\ 1.0 * i '-".
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Neural Network Example - Input
® |nputzx

I

2
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Neural Network Example - First Hidden Layer

® |nputx

® First hidden layer ><
hi = g1 (Wiz+ by) SR
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Neural Network Example - Second Hidden Layer

® |nputzx Q @
r —
® First hidden layer
hi = g1 (Wiz+ by) 7 4> @

® Second hidden layer
hy = g2(Wahy + b)
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Neural Network Example - Output Layer

® |nputx @\
r —
® First hidden layer ><
=g (Wixz+ by) @/

® Second hidden layer
hy = g2(Wahy + b)
® QOutput
¥ = g3(w] hy + b3)
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Neural Network Example - Output Layer
® |nputx
® First hidden layer ' ;< @\
h1 =tanh(W1:13+ bl) @/

® Second hidden layer
h2 = tanh( Wth + b2)

® QOutput
= O'('w;hg P bg)
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Transforming Features

Here we see the outputs from each layer of the network.
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Transforming Features

Here we see the outputs from each layer of the network.
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Transforming Features

Here we see the outputs from each layer of the network.
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Transforming Features

Now we can use a linear classifier on the final hidden features.
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Transforming Features

This is the same as previous, but we have colour coded each individual instance.
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Final Neural Network Predictions

® On the right we see the final network
predictions, colour-coded by predicted
class.

o e®
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Final Neural Network Predictions

® On the right we see the final network
predictions, colour-coded by predicted
class.

® Note, in this example we defined a
simple, and small, neural network for
ease of visualisation.

® Our network did not successfully classify
all the training data.

o e®
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Final Neural Network Predictions

® With a minor change to the structure of
the neural network, we can correctly
classify the training data.

1.5

1.0

0.5

;“‘“": ‘THE UNIVERSITY of EDINBURGH
@ informatics




Final Neural Network Predictions

® With a minor change to the structure of
the neural network, we can correctly
classify the training data.

® |n the example on the right we increased
the number of hidden units in the first
layer (from two to four).
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Training Neural Networks




Neural Network Parameters

® Recall that a multilayer neural network is a nested set of linear functions with
non-linear activations.

f@) = [1(... h(h(2))
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Neural Network Parameters

® Recall that a multilayer neural network is a nested set of linear functions with
non-linear activations.

flx) = fu(... (fi(2)))

® FEach layer f1 has its own weight matrix W, and bias vector by..

® The concatenation of these terms form the model weights that need to be learned.

0=(Wy,b, Wy, by,..., W, bp)
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Training Neural Networks

® The task of training a neural network involves finding the best parameters (i.e.
weights) for each unit.
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Training Neural Networks

® The task of training a neural network involves finding the best parameters (i.e.
weights) for each unit.

® We will use a loss function £(8) to measure the disagreement between the model
prediction f(x) and the ground truth target .
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Training Neural Networks

® The task of training a neural network involves finding the best parameters (i.e.
weights) for each unit.

® We will use a loss function £(8) to measure the disagreement between the model
prediction f(x) and the ground truth target .

® During optimisation we will try to find the parameters that minimise the loss.

® We will take the gradient of the loss Vp £ and use gradient descent to update the
parameters.
0—0-n-VoL
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Training Multilayer Neural Networks

® Hidden units make optimising the network weights more complicated as we do not
have ground truth targets for them.
® Each hidden activity can affect many output units and can therefore have many

separate effects on the error.
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Backpropagation

® Thereis a recursive algorithm for computing the derivatives. It uses the chain rule by
storing some intermediate terms. This is called backpropagation.

® We make use of the layered structure of the network to compute the derivatives,
heading backwards from the output layer to the inputs.
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Backpropagation
® Thereis a recursive algorithm for computing the derivatives. It uses the chain rule by

storing some intermediate terms. This is called backpropagation.

® We make use of the layered structure of the network to compute the derivatives,
heading backwards from the output layer to the inputs.

® Consists of two main steps:
o Aforward pass, in which we compute and store the values at all of the hidden units and
the network output.
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Backpropagation

® Thereis a recursive algorithm for computing the derivatives. It uses the chain rule by
storing some intermediate terms. This is called backpropagation.

® We make use of the layered structure of the network to compute the derivatives,
heading backwards from the output layer to the inputs.

® Consists of two main steps:
o Aforward pass, in which we compute and store the values at all of the hidden units and
the network output.
o Abackward pass, in which we calculate the derivatives of each weight, starting at the end
of the network, and reusing the previous computation as we move towards the start.




Backpropagation

® We can visualise the computations using a computation graph.

® The nodes represent all the inputs and computed quantities, and the edges
represent which nodes are computed directly as a function of which other nodes *.

LExample adapted from Ren and MacKay: CSC 411.
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Backpropagation

® We can visualise the computations using a computation graph.

® The nodes represent all the inputs and computed quantities, and the edges
represent which nodes are computed directly as a function of which other nodes *.

)
\
- L

LExample adapted from Ren and MacKay: CSC 411.
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Backpropagation

® We can visualise the computations using a computation graph.

® The nodes represent all the inputs and computed quantities, and the edges
represent which nodes are computed directly as a function of which other nodes *.

)
\
- L

LExample adapted from Ren and MacKay: CSC 411.
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Chain Rule of Calculus

® Suppose we had two functions u(x) and v(x).

® Then y = u(v(z)) is a function of a function.

@ informatics



Chain Rule of Calculus

® Suppose we had two functions u(x) and v(x).

® Then y = u(v(z)) is a function of a function.

® The chain rule of calculus gives us a way to expresses the derivative of the
composition of two differentiable functions u(z) and v(x) in terms of their
derivatives.
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Chain Rule of Calculus

® Suppose we had two functions u(x) and v(x).

® Then y = u(v(z)) is a function of a function.

® The chain rule of calculus gives us a way to expresses the derivative of the
composition of two differentiable functions u(z) and v(x) in terms of their
derivatives.

® For example, if we substitute s = v(x), thus y = u(s), and

dy _ dyds
de  dsdz
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Backpropagation - Forward Pass
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Backpropagation - Forward Pass

Wi

|

r—> a

f

l) 1

a= Wixz+ b
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Backpropagation - Forward Pass

Wi

|

r—> a—> |

f

l) 1

a= Wixz+ b
h=g(a)
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Backpropagation - Forward Pass

W- 1 W_’

| {

r—> a—> h—> U

f

b 1 b-

a= Wixz+ b
h=g(a)
@= W2h+ b2
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Backpropagation - Forward Pass

W, Wo )
r—> a—> h—> y—> [
l)J b2
a= Wixz+ b
h=g(a)
@= W2h+ b2
L. 2
L= illy—yll
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Backpropagation - Backward Pass

W, Wo )
r—> 4 —> h —> @—> L
l)J b2
a= W1:B+b1
h = g(a)
@I W2h+b2
s 2
L—glly yll
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Backpropagation - Backward Pass

W, W, Yy
r—> 4 —> h —> y—> L
r T dJ_
Y
bJ, b2
a= W1:17+ b1
h = g(a)
@I W2h+ bg
1 A 2
L—glly yll
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Backpropagation - Backward Pass

W, Wo )
l lT dd"{-’z\ a-L _ /A
1 t % oL oL 3y
by by oWy 9 oW,
a= W1:17+ b1
h=g(a)
@I W2h+ b2
1 A 2
L—illy Y|
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Backpropagation - Backward Pass

W, Wo )
l ledV{;;)\ a-L_ n
T—> a—> h —> Yy —> [ 8@_(y_y)
f p % 0L _oL oy _ oL,
by by oW,y oyoW, oy
a= W1:B+b1
h=g(a)
@I W2h+b2
L. 2
L—illy yl|
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Backpropagation - Backward Pass

W, W, y
l M oW, oL .
T—>a—> h—> §y—> L 8@:(y_y)
r e oL _oL oy oL,
by by @L oWy oy oW, aY
abo aL aL ay
abg ay abg
a= W1:17+ b1
h=g(a)
@I W2h+ b2
L. 2
L—illy yll
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Backpropagation - Backward Pass

Wi

|

Tr—> O —> h—)@—>£

f

bl
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Backpropagation - Backward Pass

Wl W_> Y
l lT a(%, oL .
r —> a—>h—>y_>£ a@—(y—y)
<_ A
f RN oL oL oy oL,
bl b2 QbL BWQ 3@ 3W2 3@
o oL oL 3y oL
by 9y by Iy
oL 9Ly
a= Wixz+ b, E_ 8@%
h=g(a)
@I W2h+ b2
L. 2
L—illy yl|

6 informatics



Backpropagation - Backward Pass

Wl W_> Y
l lT 'aV{;z a‘L_(A_ )
r—> a—> h—> y—> [ a@_yy
P %42 oL _oL oy _oL,,
by bs % BWQ 3@ 3W2 3@
o oL oL 3y oL
by 9y by Iy
oL 0Ly
a=Wiz+b ok~ i oh
h=g(a) oL _oLoh
§= Wah+by da  oh da
L. 2
L—illy yll
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Backpropagation - Backward Pass

Wl W_> Y
lT aauj;:l lT 'aV{d/:-_) aL _(A _ )
r—> a—> h—> y—> [ a@_yy
P2 %N« oL _oL oy _oL,,
by bs % BWQ 3@ 3W2 3@
o oL oL 3y oL
by 9y by Iy
oL oLy
a=Wiz+b ok~ i oh
h=gla) oL _oLoh
N h
=W, o,
1. = -
£:§||y—y||2 oWy, da oW,
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Backpropagation - Backward Pass

Wl W_> Y
lT Haél lT 'aﬁL/:z a"L _ (A _ )
r—> a—> h—> y—> [ a@_yy
Pt g% 0L oL oy oL,
by bs % BWQ 3@ 3W2 3@
o oL oL 3y oL
by 9y by Iy
oL oLy
a=Wiz+b ok~ i oh
h=gla) oL _oLoh
N da dohda
y‘fvzmb? 0L _ 9L da _oL
£:§||@_y||2 oW1 daoW; da
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Backpropagation - Backward Pass

W,

W5

Tr—> O —> h—»y—>£

Y oL

rl 9a oh TJ

b, oL b OL
e 2 o6,

a= W1:13+ b1
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Backpropagation - Backward Pass

W,

W5

Tr—> O —> h—»y—>£

Y oL

rl 9a oh TJ

b, oL b OL
e 2 o6,

a= W1:13+ b1
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Convergence of Neural Networks

® For logistic regression, the loss function is conveniently convex. A convex function
has just one minimum.
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Convergence of Neural Networks

® For logistic regression, the loss function is conveniently convex. A convex function
has just one minimum.

® Multilayer neural networks are non-convex, and gradient descent may get stuck in
local minima during training and never find the global optimum.

® |n practice this is not necessarily an issue and we can still apply gradient-based
methods and can obtain good solutions for many practical problems of interest.
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Hyperparameters

® There are several elements of the network that you can change e.g.
o The number of hidden layers.
o The number of units in each hidden layer.
o The type of non-linear activation function e.g. ReLU, sigmoid, ...
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Hyperparameters

® There are several elements of the network that you can change e.g.
o The number of hidden layers.
o The number of units in each hidden layer.
o The type of non-linear activation function e.g. ReLU, sigmoid, ...

® There also are several aspects of the training procedure that can be changed e.g.
o The learning rate.

The type of optimiser e.g. standard gradient descent, ...

How the weights are initialised.

When to stop training.

O O O




Automatic Differentiation

® The backpropagation algorithm, which can be used to compute the gradient of a
loss function applied to the output of the network wrt the parameters in each layer.

® This gradient can then be used with any gradient-based optimisation, e.g. gradient
descent.
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Automatic Differentiation

® The backpropagation algorithm, which can be used to compute the gradient of a
loss function applied to the output of the network wrt the parameters in each layer.

® This gradient can then be used with any gradient-based optimisation, e.g. gradient
descent.

® Manually computing these gradients for anything but small toy problems is too time
consuming.

® [nstead, we can make use automatic differentiation (or autodiff). This is a set of
automatic techniques to evaluate the derivative of a function.
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Automatic Differentiation

® The backpropagation algorithm, which can be used to compute the gradient of a
loss function applied to the output of the network wrt the parameters in each layer.

® This gradient can then be used with any gradient-based optimisation, e.g. gradient
descent.

® Manually computing these gradients for anything but small toy problems is too time

consuming.

® [nstead, we can make use automatic differentiation (or autodiff). This is a set of
automatic techniques to evaluate the derivative of a function.

® Many machine learning frameworks have autodiff functionality built in.
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Automatic Differentiation Example

The following is an example of using autodiff for binary logistic regression.

import jax.numpy as jnp
from jax import grad, nn

# Define our loss function

def nll_loss(X, y, w):
pred = nn.sigmoid(X@w)
loss_pos = (y==1)*jnp.log(pred)
loss_neg = (y==0)*jnp.log(1.0 - pred)
loss = -(loss_pos + loss_neg).mean()
return loss

© N UAWN

= e
N = o

13

14 # We have already appended a 1.0 to each row of X
15 X = jnp.array([[1.0, 0.5,-0.35],

16 [Lo®y =©oi,; ®.i];

17 [1.0, -1.2, 1.0]])

18 y = jnp.array([0.0, 0.0, 1.0])

19

20 # This is our initial weight vector w

21 w = jnp.array([0.0, -1.0, 1.0])

22

# Define our dataset, which has 3 dinstances
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Automatic Differentiation Example

The following is an example of using autodiff for binary logistic regression.

1 Admport jax.numpy as jnp 23 # (i) Compute the gradient manually

2 from jax import grad, nn 24 # Here we use the derived expression

3 25 manual_grad = (nn.sigmoid(X@w) - y)@X

4 # Define our loss function 26 manual_grad *= (1.0/X.shape[0])

5 def nll_loss(X, y, w): 27 print(’Manual gradient’, jnp.round(manual_grad, 3))
6 pred = nn.sigmoid(X@w) 28

7 loss_pos = (y==1)*jnp.log(pred) 29

8 loss_neg = (y==0)*jnp.log(1.0 - pred) 30 # (i1) Compute the gradient automatically

9 loss = -(loss_pos + loss_neg).mean() 31 # Evaluate the loss and compute the gradient
10 return loss 32 loss = nll_loss(X, y, w)

11 33 w_grad = grad(nll_loss, (2))(X, y, w)

12 34 print(’Auto gradient ’, jnp.round(w_grad, 3))
13 # Define our dataset, which has 3 qinstances 35

14 # We have already appended a 1.0 to each row of X 36

15 X = jnp.array([[1.0, 0.5,-0.35], 37 # We can take one step of gradient descent
16 [Lo@®y =@olly @], 38 learning_rate = 3.0

17 [1.0, -1.2, 1.0]]) 39 w_update = w - learning_rate*w_grad

18 y = jnp.array([0.0, 0.0, 1.0]) 40

19

20 # This is our initial weight vector w

21 w = jnp.array([6.0, -1.0, 1.0])

22
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Alternative Network Architectures




Images as Tensors

® \We can represent images as matrices, where each entry stores the intensity value of
a given pixel.

(o] [e] [e)
~J
~J
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Issues with Fully Connected Neural Networks

® Fully connected networks with high-dimensional inputs have a lot of model weights.

® Thisresultsin a very large number of model weights that have to be learned.
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Issues with Fully Connected Neural Networks

® Fully connected networks with high-dimensional inputs have a lot of model weights.

® Thisresultsin a very large number of model weights that have to be learned.

® Forexample, if our input was an image of size 100 x 100, this would require 10, 000
weights for each hidden unit in the first layer.
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Shift Invariance

® Fully connected networks are sensitive to the position of the signal of interest in an

inputimage.
[0]
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Shift Invariance

® Fully connected networks are sensitive to the position of the signal of interest in an

inputimage.
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Shift Invariance

® Fully connected networks are sensitive to the position of the signal of interest in an

inputimage.
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Convolutional Filters

® Constrain each hidden unit to extract features by sharing weights across the input.
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Convolutional Filters

® Constrain each hidden unit to extract features by sharing weights across the input.

® Foranimage X and K x K weight matrix W (i.e. a filter) we compute the outputs as

K K
hij =g Z Z Wi, nTitm,j+n T b

m=1 n=1
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Convolutional Filters

® Constrain each hidden unit to extract features by sharing weights across the input.

® Foranimage X and K x K weight matrix W (i.e. a filter) we compute the outputs as

K K
hij =g Z Z Wi, nTitm,j+n T b

m=1 n=1

® The output is a feature map, where each entry h;; is the local response of the filter
convolved with the image at that location.

® Multiple weight matrices can be used to produce multiple feature maps.
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Convolution
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Convolutional Neural Network - Example

® A Convolutional Neural Network (CNN) consists of learnable convolutional filters and
non-learnable pooling layers.

® The pooling layers reduce the spatial dimensionality of the feature maps.

® For classification, at the output of the network, we have a fully connected layer
which predicts one of C'classes.
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Convolutional Neural Network - Example

® A Convolutional Neural Network (CNN) consists of learnable convolutional filters and
non-learnable pooling layers.

® The pooling layers reduce the spatial dimensionality of the feature maps.

® For classification, at the output of the network, we have a fully connected layer
which predicts one of C'classes.

Input Image Features 1 Pooling 1 Features 2 Pooling 2 Flatten ~ Output

0 ®

36x36x1 28%28x4 14x14x4 10x10x8 5x5x8 300 C
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Recurrent Neural Networks

® A model for sequence data (e.g. time series).

e Different network architectures and recurrent units exist, e.g. long
short-term-memories (LSTMs).
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Recurrent Neural Networks

® A model for sequence data (e.g. time series).

e Different network architectures and recurrent units exist, e.g. long
short-term-memories (LSTMs).

® InaRNN, each input is processed sequentially, one item at a time.

® Pastinformation is retained through past hidden states.
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Recurrent Neural Networks
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Recurrent Neural Networks

® |n RNNs, the outputs y; are a function of the current input «; and the previous hidden
state hy_1.
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Recurrent Neural Networks

® |n RNNs, the outputs y; are a function of the current input «; and the previous hidden
state hy_1.

ONONONNO
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Transformers

® Alternative, and more recent, approach for modelling sequential data.
® Unlike RNNs, Transformers process the entire input all at once.
o Thus training can be performed in parallel.
o They are also less susceptible to ‘forgetting’ information from the past, i.e. better suited to
capture long-range dependencies.
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® Alternative, and more recent, approach for modelling sequential data.

® Unlike RNNs, Transformers process the entire input all at once.
o Thus training can be performed in parallel.
o They are also less susceptible to ‘forgetting’ information from the past, i.e. better suited to
capture long-range dependencies.

® Transformers have a special type of unit called a self-attention unit. This is used to
compute similarity scores between inputs in the input sequence.
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Transformers

® Alternative, and more recent, approach for modelling sequential data.

® Unlike RNNs, Transformers process the entire input all at once.
o Thus training can be performed in parallel.
o They are also less susceptible to ‘forgetting’ information from the past, i.e. better suited to
capture long-range dependencies.

® Transformers have a special type of unit called a self-attention unit. This is used to
compute similarity scores between inputs in the input sequence.

® They can also be applied to other data types, e.g. images.
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Summary

e Artificial neural networks are a powerful non-linear modelling tool for classification
and regression.

® They are not biologically plausible models.
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Summary

e Artificial neural networks are a powerful non-linear modelling tool for classification
and regression.

® They are not biologically plausible models.

® The output of the hidden units are a new representation of the original input data.
This can be interpreted as learned features.

® Training makes use of the backpropagation algorithm to compute derivatives.
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Summary

e Artificial neural networks are a powerful non-linear modelling tool for classification
and regression.

® They are not biologically plausible models.

® The output of the hidden units are a new representation of the original input data.
This can be interpreted as learned features.

® Training makes use of the backpropagation algorithm to compute derivatives.

® Beyond standard fully connected networks, alternative architectures exist for
learning from structured input data (e.g. images, audio, text, ...).
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