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Recommender Systems



Recommender Systems
• Recommender systems are systems which attempt to recommend items to users.
◦ e.g. movies, books, online ads, restaurants, etc.

• This is achieved by using information users provide about other items.
◦ e.g. their past viewing/ purchasing behaviour, which movies they rated high or low, which

ads they clicked on, etc.

• They are commonly found on websites or services that attempt to personalise
content for users.
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The Recommendation Task
• The central task we would like to solve is how to predict a user’s rating (i.e. score) for

the items they have not yet seen.

• We assumewe have access to rating data from other users, but this is likely to be very
sparse, i.e. the average user only rates a very small number of items.
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Sources of Rating Data
Explicit Feedback
• Ask users to rate items, e.g. rating from 1 to 5, or like (+1) versus dislike (‑1), etc.

• Can be hard to get this information in practice.

Implicit Feedback
• Extracted from user actions, e.g. click on a video, watch until the end, ...

• Weaker form of supervision.

Assumption
Wewill assume that we have explicit feedback, and that any missing ratings aremissing
at random.
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User Rating Data - Example
• Suppose we observed data from four

different users:U = {u1, u2, u3, u4}.

• Who provided ratings for five different
items: I = {i1, i2, i3, i4, i5}.
• Each rating can be one of five possible

values: {1, 2, 3, 4, 5}.
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User Rating Data - Example
• We can represent user ratings this as a

matrix Y of size |U| × |I|, i.e.
num_users × num_items.
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Missing Data
• Our ratings matrix can have many

missing entries.

4 5 1

5 4 2

1 5 5

1 2 4

us
er
s

Y

items

• Most users do not rate many items.

• As a result the data we observe can be
very sparse.

 

 

 

 



PredictingMissing Ratings
• How can we predict missing ratings?

4 5 1

5 4 2

1 5 5

1 2 4

us
er
s

Y

items

• Suppose we have a user u4 who has
provided the following ratings:
i1: 1 star
i3: 2 stars
i4: 4 stars

• Wewould like to predict how they would
rate items 2 and 5.

• We refer to the estimated ratings as Ŷui.

 

 

 

 



PredictingMissing Ratings
• How can we predict missing ratings?

4 5 1

5 4 2

1 5 5

1 2 4

us
er
s

Y

items

• Suppose we have a user u4 who has
provided the following ratings:
i1: 1 star
i3: 2 stars
i4: 4 stars

• Wewould like to predict how they would
rate items 2 and 5.

• We refer to the estimated ratings as Ŷui.
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PredictingMissing Ratings - Average Rating
• One simple approach is to report the

average rating for an item.
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• Average rating:

Ŷui = k
|U|∑
u′=1

Yu′i≠?

Yu′i

• k is a normalisation factor:

k = 1/
|U |∑
u′=1

Yu′i≠?

1

• This approach is simple, but it fails to
capture differences between users.
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Collaborative Filtering
• Another approach is to use rating information from other users.

• We can find similar users and thenmake predictions for our user of interest based
their similarity to these existing users.

Assumption
• The underlying assumption is that if user A and B rate items they have both seen

similarly, then user A is more likely to rate items they have not seen similar to how
user B would.
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PredictingMissing Ratings -Weighted Average
• We canweight the ratings score based

on the similarity between the users.
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• Weighted average:

Ŷui = k
|U|∑
u′=1

Yu′i≠?

sim(u, u′)Yu′i

• Here sim() is a similarity measure
between a pair of users.

• k is a normalisation factor:

k = 1/
|U |∑
u′=1

sim(u, u′)
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Limitations
• We need to define an appropriate similarity measure.

• Computing reliable similarity can be difficult with very sparse data.

• We need to store the entire dataset in memory at inference time.

 

 

 

 



Matrix Factorisation



Matrix Factorisation
• The recommendation task can be viewed as one ofmatrix completion.

• Here the goal is to predict all the missing entries of Y given the subset of user rating
pairs (u, i) ∈ S we have observed (i.e. Yui ≠?)

L(Ŷ) =
∑
(u,i)∈S

(Yui − Ŷui)2

= | |Y − Ŷ| |2
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Low Rank Assumption
• The previous problem is under specified i.e. there are infinitely many ways of filing in

the missing entries of Y.

• We need to add some constraints.

Assumption
• Assume that Y is a low rankmatrix.

• We can rewrite it as Ŷ = UV⊺ ≈ Y.

• Here U is a |U| ×K matrix and V is a |I | ×K matrix.
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Matrix Factorization
• Here we assume that our data can be represented as the product of twomatrices

Ŷ = UV⊺ ≈ Y.
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Matrix Factorisation - Prediction
• We assume that our data can be represented as the product of a user matrix U and

an itemmatrix V, i.e. Ŷ = UV⊺ ≈ Y.

• Each row uu of U represents a different user.

• Similarly, each row vi of V represents a different item.

• To predict a missing entry we simply evaluate Ŷui = u⊺u vi.
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Model TrainingWith SGD
• We can estimate the model weights

θ = {U,V} using stochastic gradient descent
(SGD).

• As there is missing data, we only have a
subset of user rating pairs (u, i) ∈ S, where
Yui ≠?.

• Our loss function is

L(θ) =
∑
(u,i) ∈S

(Yui − u⊺u vi)2.

Require: step size 𝜂, number steps N,
valid indicesS

1: U← initialisation
2: V← initialisation
3: for n← 1 to N do
4: (u, i) ∈ S
5: eui = (Yui − u⊺u vi)
6: uu ← uu + 2𝜂 (euivi)
7: vi ← vi + 2𝜂 (euiuu)
8: return U,V
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Regularisation
• We can also regularise our weights so that

they do not become too large.

• Our loss function then becomes∑
(u,i) ∈S

(Yui−u⊺u vi)2+𝜆(
∑

u
| |uu | |2+

∑
i
| |vi | |2) .

Require: step size 𝜂, number steps N,
regularisation strength 𝜆, valid
indicesS

1: U← initialisation
2: V← initialisation
3: for n← 1 to N do
4: (u, i) ∈ S
5: eui = (Yui − u⊺u vi)
6: uu ← uu + 2𝜂 (euivi − 𝜆uu)
7: vi ← vi + 2𝜂 (euiuu − 𝜆vi)
8: return U,V
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Matrix Factorization Example



Example Overview
• Here we will walk through an example of applying matrix factorisation to predict

unobserved user ratings for a small toy problem.

• Wewill use SGD to estimate the model weights θ = {U,V}.
• Our training loss is the squared error with additional weight regularisation

L(θ) =
∑
(u,i)∈S

(Yui − u⊺u vi)2 + 𝜆(
∑

u
| |uu | |2 +

∑
i
| |vi | |2) .
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Matrix Factorisation - Example
• In this example we have 6 users and 5 items, where 13 of the ratings are missing.

• Our model will use 2 factors i.e. K = 2.
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Training Error
• Here we plot the error | |Y −UV⊺ | |2 obtained during training.
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Matrix Factorisation - Example
• Below we see the learned factors after running SGD.
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Matrix Factorisation - Example Results
• On the left we see the observed input data Y, and on the right we see the model

predictions Ŷ.
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Visualising the Learned User Factors
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Visualising the Learned Item Factors
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The Netflix Prize
• In 2006 Netflix released a dataset containing 100,480,507 movie ratings that 480,189

users gave to 17,770 movies.

• Each rating was an integer between 1 and 5, where a higher number indicated that a
user liked a movie more.

• They offered a prize of $1,000,000 for the team that could improve prediction
performance compared to the algorithm Netflix used at the time on a held out test
set.
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The Netflix Prize - Leaderboard

 

 

Image credit: https://www.wired.com/2012/04/netflix‑prize‑costs

 

 

 

 



The Netflix Prize - Data Privacy
• The original dataset did not provide any user identifying information, i.e. user names

and IDs were anonymised.

• However, researchers were able to identify users in the dataset by matching their
ratings against other publicly available sources of data (e.g. reviews they provided on
the website IMDB).

• As a result, the Netflix Prize dataset is no longer publicly available.
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Summary
• We discussed the recommendation problem.

• Recommendation systems are commonly deployed in services that aim to
recommend items to users, e.g. movies, books, ads, ...

• We outlined amemory‑based collaborative filtering method and amodel‑based
matrix factorisation approach for solving for unobserved ratings.
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