

the university of edinburgh informatics

Applied Machine Learning (AML)

Class Starting at 4:10pm

Oisin Mac Aodha • Siddharth N.

Applied Machine Learning

Week 7: Evaluation and Model Selection

This slides will be made available on the project website after the class. This session will be recorded.

Overview

- 1) Outline your tasks this for week
- 2) Discussion of Week 6's topics

Coursework Discussion on Piazza

- Please mark questions about coursework project as **private**.
- Ensure that the question is visible by *all* the instructors.
- FAQ on course website
 - https://tinyurl.com/uoeaml/mini-project/#fag Ο

Coursework Progress Report

- Progress reports due by **5pm**, **30 Oct (Wed)** (not assessed)
- Submit through form linked on website
 - Only one team member needs to submit Ο
 - Use 2-digit 0-padded naming convention [e.g. 06.pdf, 23.pdf] Ο
- (Optional) Feedback session 1-3pm, 01 Nov (Fri): AT 5.04
 - Primarily to check you are not miscalibrated Ο
 - Will communicate schedule once we know signup Ο

Coursework Final Submission

- Final submission due 12pm, Thu 21th Nov
 - Only report submission required here
- Supplementary materials deadline in the following week
 - Source for project (Readme + minimal structure)
 - Source for report
- Further details for both announced later

Coursework: Communication & Contribution

- Important to communicate with teammates do not neglect / delay
- Regular contact ensures everyone is on the same page
- Individual grade based on final report grade **
 - Statement of contribution **required** (not counted for page limit) Ο
 - Disparities will be taken into account for individual grades Ο
- Also remember Guidance on use of Generative Al
 - **Must** explicitly acknowledge use and describe how it was used Ο

Week 7: Your tasks for this week

- Complete Lab 3 1)
- Watch videos for week 7 2)
 - Clustering and Non-Linear Dimensionality Reduction
- Ask questions on Piazza if stuck 3)
- Continue working on the coursework 4)
- Start Tutorial 3 which takes places next week link in week 8 5)

Evaluation

Which evaluation metrics are commonly used for evaluating the performance of a classification model when there is a class imbalance problem?

- 1. Accuracy and Error
- 2. Precision and Error
- 3. Precision and Recall
- 4. Error and Recall

Match the term to the formulation

1. Precision	Λ	<u>]</u>
2. Recall	А.	TP
3. False Positive Rate	В.	$\frac{1}{rD}$
4. True Positive Rate	C	ΓΓ
5. False Negative Rate	С.	TP
	D.	I

Error Measures

• False Positive Rate (FPR) = $\frac{FP}{FP + TN}$ • (False Alarm) % of '-' misclassified as '+' • False Negative Rate (FNR) = $\frac{FN}{TP + FN}$ ○ (Miss) % of '+' misclassified as '-' • Recall / True Positive Rate (TPR) = $\frac{TP}{TP + FN}$ ○ (1 - Miss) % of '+' correctly predicted • Precision / Positive Predictive Rate (PPR) = $\frac{TP}{TP + FP}$

• % of '+' out of all positive predictions

Precision-Recall Curve

$$Precision = \frac{TP}{TP + FP} \quad Recall = \frac{TP}{TP + FN}$$

email	label	$p(y \boldsymbol{x})$
"send us your password"	+	0.92
"send us review"	_	0.80
"review your account"	-	0.72
"review us"	+	0.65
"send your password"	+	0.61
"send us your account"	+	0.43

•

Receiver Operating Characteristic (ROC)

True Postive Rate (TPR) / Recall = $\frac{TP}{TP + FN}$ False Positive Rate (FPR) = $\frac{FP}{FP + TN}$

AUC

- area under ROC curve
- larger area \implies better model

0.8

Receiver Operating Characteristic (ROC)

False Positive Rate (FPR) = $\frac{FP}{FP + TN}$ True Postive Rate (TPR) / Recall = $\frac{TP}{TP + FN}$

AUC

- area under ROC curve
- larger area \implies better model

Simpson's Paradox

Simpson's Paradox

Model Selection

Preliminaries

Population vs. Sample statistics

Population: All the elements from a set

E.g. All leave-1-out splits of the dataset

Sample: Observations drawn from population E.g. Some *N* splits of the dataset

 $s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$

*Bessel's correction

Preliminaries

Central Limit Theorem (CLT)

For a set of samples x_1, \ldots, x_N, \ldots from a population with expected mean μ and finite variance σ^2

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{N}} \sim \mathcal{N}(0, 1) \quad \text{as } N \to \infty$$

Assume

- population μ known
- population σ^2 known

Preliminaries

Student's-t distribution

- CLT: (weak) convergence to $\mathcal{N}(0,1)$ as $N \to \infty$
- for smaller N, not Gaussian!

Assume

- population μ known
- population σ^2 unknown
- estimate sample variance $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \overline{x}_N)^2$

$$t = \frac{\overline{x} - \mu}{s/\sqrt{N}}, \quad v = N - 1$$

Hypothesis Testing

- Formally examine two opposing conjectures (hypothesis): H_0 and H_1
- Mutually exclusive and exhaustive: $H_0 = \text{True} \implies H_1 = \text{False}$
- Analyse data to determine which is True and which is False

Null Hypothesis: H_0

- States the assumption to be tested
- Begin with assumption that $H_0 = True$
- Always evaluates (partial) equality $(=, \leq, \geq)$

Alternative Hypothesis: H_1 States the assumption believed to be True Evaluate if evidence supports assumption • Always evaluates (strict) inequality $(\neq, >, <)$

Example: Hypothesis Testing for Models

Example: Hypothesis Testing for Models

Hypothesis Testing: Caveats

- Rejecting H_0 does not imply 100% sure H_0 is False
- Failing to reject H_0 does not imply H_0 is True
- Confidence level ($\alpha = 0.05$) is from convention; not always best
- Statistical significance does not imply practical *relevance*
 - Rejecting $H_0: \mu^d = 0$ only tells us that $\mu^d \neq 0$ but not how big or important the difference is
 - **Remedy:** Report confidence interval (CI)

$$\bar{d} \pm c|_{\alpha} \cdot \frac{s}{\sqrt{N}}$$

which, for our example would be

$$2.53 \pm 2.093 \cdot \frac{5.27}{\sqrt{20}}$$

 2.53 ± 2.47

 $(\alpha = 0.05, c|_{0.05} = 2.093)$