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Extensions for Linear Dimensionality
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PCA on Non-Linear Data
Example: Shells
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Feature Transformation
Key Idea: Transform inputs x using a feature map 𝜙 (x)

x ∈ RD, 𝜙 (x) ∈ RC, C > D!
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Kernel PCA

X = [x1; . . . ;xN], Φ(X) = [𝜙 (x1); . . . ;𝜙 (xN)]
𝜅 (xi, xj) = 𝜙 (xi)>𝜙 (xj) K = Φ(X)>Φ(X)

(kernel function) (kernel matrix)

S =
1
NXX>

Sv = 𝜆v

Kernel Trick
No need to compute 𝜙 (x)—only 𝜅 (xi, xj)!

S =
1
NΦ(X)Φ(X)>

v = Φ(X)a =
N∑

i=1
ai𝜙 (xi)

(…some algebra)

Ka = N𝜆a
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Kernel PCA: Example

𝜅 (xi, xj) = exp(
−‖xi − xj‖2

2𝜎2 ) (RBF Kernel)
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Kernel PCA
Choosing the right kernel
• Not an easy choice

• Construct by hand/eye where feasible

• Possible to learn kernel matrices K directly from data!

Several non‑linear dimensionality reductionmethods can be viewed as kernel PCA, with
kernels learned from data [1]

1. J. Ham et al, A Kernel View of the Dimensionality Reduction of Manifolds, 2004
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Visualisation



Manifold Hypothesis
High‑dimensional data in the real world really lies on low‑dimensional manifolds
within that high‑dimensional space.
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Overview
Key Ideas
• Difficult to construct a single global transformation of data

• Focus instead on some localmeasure of closeness

• Project data x onto lower‑dimensional manifold ase
• Question: can we preserve local measure of closeness?

LetX denote the high‑dimensional data space, and E denote the low‑dimensional
manifold space. We can define the following distance measures on the two spaces
respectively

DX (xi, xj) DE (ei, ej)
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Multi-Dimensional Scaling (MDS)
Project data fromX to E while preserving the distance between every pair of
samples in original data X

DX (xi, xj) = ‖xi − xj‖ DE (ei, ej) = ‖ei − ej‖ (example)

Objective: min
∑
i,j

(DX (xi, xj) − DE (ei, ej))2

• distance metricsDX,DE could really be anything

• choosing L2 helps make optimisation simpler
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MDS: Example
Swiss Roll

 

 

 

 

Data MDS (Euclidean)

• Projects down to 2D while preserving distances

• Preserving distances outside the manifold!
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Isomap
Project data fromX to E while preserving the distance between points on the
embedded manifold, not arbitrary distance!

 

 

Find the Geodesic

• Generate nearest‑neighbour graph G on data

• Shortest distance between points in this graph

◦ Floyd‑Warshall algorithm (all pairs shortest path)

• PerformMDS withDX (xi, xj) = GFW(xi, xj)

Objective: min
∑
i,j

(GFW(xi, xj) − ‖ei − ej‖)2

J.B. Tenenbaum et al, A Global Geometric Framework for Nonlinear Dimensionality Reduction, 2000
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Isomap: Manifold

 

 

 

 

 

 

Data

Graph MDS
+ Floyd‑Warshall
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Isomap: Example and Issues

 

 

Issues

• requires uniform and dense
sampling onmanifold

• prone to topological
instabilities (effect of noise,
non‑convexity)

• can get disconnected graphs!

• slow with size of data —
Floyd‑Warshall is O(N3)!
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Locally Linear Embeddings (LLE)
Project data fromX to E while preserving the linear transform that reconstructs
points from the K nearest neighbours

argmin
w1,...,wK

N∑
i=1

(xi −
∑

xk∈n(xi)
wkxk)2

argmin
e1,...,eN

N∑
i=1

(ei −
∑

ek∈n(ei)
wkek)2

Algorithm
1. Find the weights wk

2. Fix weights wk and find optimal embeddings ei

solved using a (sparse) eigen‑decomposition
 

 

S.T. Roweis & L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, 2000
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LLE: Example and Issues

 

 

Advantages

• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues

• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

 

 

 

 



LLE: Example and Issues

 

 

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues

• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

 

 

 

 



LLE: Example and Issues

 

 

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues

• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

 

 

 

 



LLE: Example and Issues

 

 

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues

• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

 

 

 

 



LLE: Example and Issues

 

 

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues

• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

 

 

 

 



LLE: Example and Issues

 

 

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues
• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

 

 

 

 



LLE: Example and Issues

 

 

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues
• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

 

 

 

 



LLE: Example and Issues

 

 

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues
• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

 

 

 

 



t-distributed Stochastic Neighbour Embedding (t-SNE)
Project data fromX to E while preserving the probability distribution over
pairwise similarities between points in the space.

p(xj |xi) =
exp(−‖xi − xj‖2/2𝜎2

i )∑
k≠i exp(−‖xi − xk‖2/2𝜎2

i )
(i ≠ j)

p(xi |xi) = 0
∑

i
p(xj |xi) = 1

DX (xi, xj) =
1

2N
(
p(xi |xj) + p(xj |xi)

)
DX (xi, xi) = 0

∑
ij

DX (xi, xj) = 1

DE (ei, ej) ≔ Student−t(‖ei − ej‖2, 𝜈 = 1)

DE (ei, ej) =
(
1 + ‖ei − ej‖2)−1∑

k
∑

l≠k
(
1 + ‖ek − el‖2)−1

DE (ei, ei) = 0

Student‑t allows dissimilar points inX to be

modelled far away in E!

Objective: minKL
(
DX (xi, xj)‖ DE (ei, ej)

)

L.J.P. van der Maaten & G.E. Hinton, Visualizing Data using t‑SNE, 2008

 

 

 

 



t-distributed Stochastic Neighbour Embedding (t-SNE)
Project data fromX to E while preserving the probability distribution over
pairwise similarities between points in the space.

p(xj |xi) =
exp(−‖xi − xj‖2/2𝜎2

i )∑
k≠i exp(−‖xi − xk‖2/2𝜎2

i )
(i ≠ j)

p(xi |xi) = 0
∑

i
p(xj |xi) = 1

DX (xi, xj) =
1

2N
(
p(xi |xj) + p(xj |xi)

)
DX (xi, xi) = 0

∑
ij

DX (xi, xj) = 1

DE (ei, ej) ≔ Student−t(‖ei − ej‖2, 𝜈 = 1)

DE (ei, ej) =
(
1 + ‖ei − ej‖2)−1∑

k
∑

l≠k
(
1 + ‖ek − el‖2)−1

DE (ei, ei) = 0

Student‑t allows dissimilar points inX to be

modelled far away in E!

Objective: minKL
(
DX (xi, xj)‖ DE (ei, ej)

)

L.J.P. van der Maaten & G.E. Hinton, Visualizing Data using t‑SNE, 2008

 

 

 

 



t-distributed Stochastic Neighbour Embedding (t-SNE)
Project data fromX to E while preserving the probability distribution over
pairwise similarities between points in the space.

p(xj |xi) =
exp(−‖xi − xj‖2/2𝜎2

i )∑
k≠i exp(−‖xi − xk‖2/2𝜎2

i )
(i ≠ j)

p(xi |xi) = 0
∑

i
p(xj |xi) = 1

DX (xi, xj) =
1

2N
(
p(xi |xj) + p(xj |xi)

)
DX (xi, xi) = 0

∑
ij

DX (xi, xj) = 1

DE (ei, ej) ≔ Student−t(‖ei − ej‖2, 𝜈 = 1)

DE (ei, ej) =
(
1 + ‖ei − ej‖2)−1∑

k
∑

l≠k
(
1 + ‖ek − el‖2)−1

DE (ei, ei) = 0

Student‑t allows dissimilar points inX to be

modelled far away in E!

Objective: minKL
(
DX (xi, xj)‖ DE (ei, ej)

)
L.J.P. van der Maaten & G.E. Hinton, Visualizing Data using t‑SNE, 2008

 

 

 

 



t-distributed Stochastic Neighbour Embedding (t-SNE)
Project data fromX to E while preserving the probability distribution over
pairwise similarities between points in the space.

p(xj |xi) =
exp(−‖xi − xj‖2/2𝜎2

i )∑
k≠i exp(−‖xi − xk‖2/2𝜎2

i )
(i ≠ j)

p(xi |xi) = 0
∑

i
p(xj |xi) = 1

DX (xi, xj) =
1

2N
(
p(xi |xj) + p(xj |xi)

)
DX (xi, xi) = 0

∑
ij

DX (xi, xj) = 1

DE (ei, ej) ≔ Student−t(‖ei − ej‖2, 𝜈 = 1)

DE (ei, ej) =
(
1 + ‖ei − ej‖2)−1∑

k
∑

l≠k
(
1 + ‖ek − el‖2)−1

DE (ei, ei) = 0

Student‑t allows dissimilar points inX to be

modelled far away in E!

Objective: minKL
(
DX (xi, xj)‖ DE (ei, ej)

)
L.J.P. van der Maaten & G.E. Hinton, Visualizing Data using t‑SNE, 2008

 

 

 

 



t-SNE: Examples

 

 

 

 

 

 

Figures: https://jlmelville.github.io/uwot/umap‑examples.html
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So Far
• Different (relatively simple) aspects may be preserved in mappingX to E

• Trade‑off in terms of simplicity of assumption and ease of optimisation

• t‑SNE quite popular

◦ can incorporate both global and local structure (distributional)
◦ works on large scale and high‑dimensional data

Issue
None of these methods learn an explicitmetric

• {x1, . . . , xN}
f−→ {e1, . . . , eN} but xt

�Sf−→ et for unseen xt

• cannot project an unseen point without redoing the optimisation!
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UniformManifold Approximation & Projection (UMAP)
Leverage Riemannian geometry and topology to construct a general framework
for manifold learning and dimensionality reduction.

Overview

• Use simplices as basic building block

• Estimate connectivity and distances between points

• Construct graph that captures topology of manifold!

 

 

 

 

 

 

L. McInnes et al, UMAP: UniformManifold Approximation and Projection for Dimension Reduction, 2018
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UMAP:Dimensionality Reduction
• Construct faithful topological representation of data

• Compute cross‑entropy between topological structures ofX and E in terms of the
simplices (building blocks)

• Optimise low‑dimensional representation to have minimum cross‑entropy

Advantages

• Can learn a metric, so computing xt
f−→ et for unseen xt is feasible

(when labels available)!

• Is fast and scalable

• Can be run unsupervised, supervised, or even weakly supervised!
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UMAP: Examples and Comparisons
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Figures: https://jlmelville.github.io/uwot/umap‑examples.html

 

 

 

 



UMAP: Examples and Comparisons

t‑S
N
E

 

 

 

 

 

 

U
M
AP

 

 

 

 

 

 

Figures: https://jlmelville.github.io/uwot/umap‑examples.html

 

 

 

 



UMAP: Examples and Comparisons

t‑S
N
E

 

 

 

 

 

 

U
M
AP

 

 

 

 

 

 

Figures: https://jlmelville.github.io/uwot/umap‑examples.html

 

 

 

 



Summary

• Non‑linear dimensionality reduction helps visualise complex data in low
dimensions—relies on the manifold hypothesis

• Can explore ways to transform data to run linear versions of algorithms
(e.g. kernel PCA)

• Most methods exploit the nearest neighbour graph in some form
(e.g. MDS, Isomap, LLE, etc.)

• Data is typically required to be clean (not much noise) and dense
…not too strong a requirement, especially with vision or language

• Many approaches to choose from—t‑SNE and UMAPmost popular
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