

 Applied Machine Learning (AML)
Non‑Linear Dimensionality Reduction

Oisin Mac Aodha • Siddharth N.

Outline

Non-Linearity
• Extensions for Linear Dimensionality Reduction

◦ Kernel PCA

• Visualisation
◦ Multi‑Dimensional Scaling (MDS)
◦ Isomap
◦ Locally Linear Embeddings (LLE)
◦ t‑distributed Stochastic Neighbour Embedding (t‑SNE)
◦ UniformManifold Approximation & Projection (UMAP)

Extensions for Linear Dimensionality
Reduction

PCA on Non-Linear Data
Example: Shells

Data

PCA

PCA on Non-Linear Data
Example: Shells

Data PCA

Feature Transformation
Key Idea: Transform inputs x using a feature map 𝜙 (x)

x ∈ RD, 𝜙 (x) ∈ RC, C > D!

Feature Transformation
Key Idea: Transform inputs x using a feature map 𝜙 (x)

x ∈ RD, 𝜙 (x) ∈ RC, C > D!

Feature Transformation
Key Idea: Transform inputs x using a feature map 𝜙 (x)

x ∈ RD, 𝜙 (x) ∈ RC, C > D!

Feature Transformation
Key Idea: Transform inputs x using a feature map 𝜙 (x)

x ∈ RD, 𝜙 (x) ∈ RC, C > D!

Kernel PCA

X = [x1; . . . ;xN], Φ(X) = [𝜙 (x1); . . . ;𝜙 (xN)]
𝜅 (xi, xj) = 𝜙 (xi)>𝜙 (xj) K = Φ(X)>Φ(X)

(kernel function) (kernel matrix)

S =
1
NXX>

Sv = 𝜆v

Kernel Trick
No need to compute 𝜙 (x)—only 𝜅 (xi, xj)!

S =
1
NΦ(X)Φ(X)>

v = Φ(X)a =
N∑

i=1
ai𝜙 (xi)

(…some algebra)

Ka = N𝜆a

Kernel PCA

X = [x1; . . . ;xN], Φ(X) = [𝜙 (x1); . . . ;𝜙 (xN)]
𝜅 (xi, xj) = 𝜙 (xi)>𝜙 (xj) K = Φ(X)>Φ(X)

(kernel function) (kernel matrix)

S =
1
NXX>

Sv = 𝜆v

Kernel Trick
No need to compute 𝜙 (x)—only 𝜅 (xi, xj)!

S =
1
NΦ(X)Φ(X)>

v = Φ(X)a =
N∑

i=1
ai𝜙 (xi)

(…some algebra)

Ka = N𝜆a

Kernel PCA

X = [x1; . . . ;xN], Φ(X) = [𝜙 (x1); . . . ;𝜙 (xN)]
𝜅 (xi, xj) = 𝜙 (xi)>𝜙 (xj) K = Φ(X)>Φ(X)

(kernel function) (kernel matrix)

S =
1
NXX>

Sv = 𝜆v

Kernel Trick
No need to compute 𝜙 (x)—only 𝜅 (xi, xj)!

S =
1
NΦ(X)Φ(X)>

v = Φ(X)a =
N∑

i=1
ai𝜙 (xi)

(…some algebra)

Ka = N𝜆a

Kernel PCA

X = [x1; . . . ;xN], Φ(X) = [𝜙 (x1); . . . ;𝜙 (xN)]
𝜅 (xi, xj) = 𝜙 (xi)>𝜙 (xj) K = Φ(X)>Φ(X)

(kernel function) (kernel matrix)

S =
1
NXX>

Sv = 𝜆v

Kernel Trick
No need to compute 𝜙 (x)—only 𝜅 (xi, xj)!

S =
1
NΦ(X)Φ(X)>

v = Φ(X)a =
N∑

i=1
ai𝜙 (xi)

(…some algebra)

Ka = N𝜆a

Kernel PCA: Example

𝜅 (xi, xj) = exp(
−‖xi − xj‖2

2𝜎2) (RBF Kernel)

RBF (𝜎2 = 0.5) RBF (𝜎2 = 0.01)

Kernel PCA: Example

𝜅 (xi, xj) = exp(
−‖xi − xj‖2

2𝜎2) (RBF Kernel)

RBF (𝜎2 = 0.5) RBF (𝜎2 = 0.01)

Kernel PCA
Choosing the right kernel
• Not an easy choice

• Construct by hand/eye where feasible

• Possible to learn kernel matrices K directly from data!

Several non‑linear dimensionality reductionmethods can be viewed as kernel PCA, with
kernels learned from data [1]

1. J. Ham et al, A Kernel View of the Dimensionality Reduction of Manifolds, 2004

Kernel PCA
Choosing the right kernel
• Not an easy choice

• Construct by hand/eye where feasible

• Possible to learn kernel matrices K directly from data!

Several non‑linear dimensionality reductionmethods can be viewed as kernel PCA, with
kernels learned from data [1]

1. J. Ham et al, A Kernel View of the Dimensionality Reduction of Manifolds, 2004

Kernel PCA
Choosing the right kernel
• Not an easy choice

• Construct by hand/eye where feasible

• Possible to learn kernel matrices K directly from data!

Several non‑linear dimensionality reductionmethods can be viewed as kernel PCA, with
kernels learned from data [1]

1. J. Ham et al, A Kernel View of the Dimensionality Reduction of Manifolds, 2004

Kernel PCA
Choosing the right kernel
• Not an easy choice

• Construct by hand/eye where feasible

• Possible to learn kernel matrices K directly from data!

Several non‑linear dimensionality reductionmethods can be viewed as kernel PCA, with
kernels learned from data [1]

1. J. Ham et al, A Kernel View of the Dimensionality Reduction of Manifolds, 2004

Kernel PCA
Choosing the right kernel
• Not an easy choice

• Construct by hand/eye where feasible

• Possible to learn kernel matrices K directly from data!

Several non‑linear dimensionality reductionmethods can be viewed as kernel PCA, with
kernels learned from data [1]

1. J. Ham et al, A Kernel View of the Dimensionality Reduction of Manifolds, 2004

Visualisation

Manifold Hypothesis
High‑dimensional data in the real world really lies on low‑dimensional manifolds
within that high‑dimensional space.

Manifold Hypothesis
High‑dimensional data in the real world really lies on low‑dimensional manifolds
within that high‑dimensional space.

Manifold Hypothesis
High‑dimensional data in the real world really lies on low‑dimensional manifolds
within that high‑dimensional space.

Overview
Key Ideas
• Difficult to construct a single global transformation of data

• Focus instead on some localmeasure of closeness

• Project data x onto lower‑dimensional manifold ase
• Question: can we preserve local measure of closeness?

LetX denote the high‑dimensional data space, and E denote the low‑dimensional
manifold space. We can define the following distance measures on the two spaces
respectively

DX (xi, xj) DE (ei, ej)

Overview
Key Ideas
• Difficult to construct a single global transformation of data

• Focus instead on some localmeasure of closeness

• Project data x onto lower‑dimensional manifold ase
• Question: can we preserve local measure of closeness?

LetX denote the high‑dimensional data space, and E denote the low‑dimensional
manifold space. We can define the following distance measures on the two spaces
respectively

DX (xi, xj) DE (ei, ej)

Multi-Dimensional Scaling (MDS)
Project data fromX to E while preserving the distance between every pair of
samples in original data X

DX (xi, xj) = ‖xi − xj‖ DE (ei, ej) = ‖ei − ej‖ (example)

Objective: min
∑
i,j

(DX (xi, xj) − DE (ei, ej))2

• distance metricsDX,DE could really be anything

• choosing L2 helps make optimisation simpler

Multi-Dimensional Scaling (MDS)
Project data fromX to E while preserving the distance between every pair of
samples in original data X

DX (xi, xj) = ‖xi − xj‖ DE (ei, ej) = ‖ei − ej‖ (example)

Objective: min
∑
i,j

(DX (xi, xj) − DE (ei, ej))2

• distance metricsDX,DE could really be anything

• choosing L2 helps make optimisation simpler

Multi-Dimensional Scaling (MDS)
Project data fromX to E while preserving the distance between every pair of
samples in original data X

DX (xi, xj) = ‖xi − xj‖ DE (ei, ej) = ‖ei − ej‖ (example)

Objective: min
∑
i,j

(DX (xi, xj) − DE (ei, ej))2

• distance metricsDX,DE could really be anything

• choosing L2 helps make optimisation simpler

Multi-Dimensional Scaling (MDS)
Project data fromX to E while preserving the distance between every pair of
samples in original data X

DX (xi, xj) = ‖xi − xj‖ DE (ei, ej) = ‖ei − ej‖ (example)

Objective: min
∑
i,j

(DX (xi, xj) − DE (ei, ej))2

• distance metricsDX,DE could really be anything

• choosing L2 helps make optimisation simpler

MDS: Example
Swiss Roll

Data MDS (Euclidean)

• Projects down to 2D while preserving distances

• Preserving distances outside the manifold!

MDS: Example
Swiss Roll

Data MDS (Euclidean)

• Projects down to 2D while preserving distances

• Preserving distances outside the manifold!

Isomap
Project data fromX to E while preserving the distance between points on the
embedded manifold, not arbitrary distance!

Find the Geodesic

• Generate nearest‑neighbour graph G on data

• Shortest distance between points in this graph

◦ Floyd‑Warshall algorithm (all pairs shortest path)

• PerformMDS withDX (xi, xj) = GFW(xi, xj)

Objective: min
∑
i,j

(GFW(xi, xj) − ‖ei − ej‖)2

J.B. Tenenbaum et al, A Global Geometric Framework for Nonlinear Dimensionality Reduction, 2000

Isomap
Project data fromX to E while preserving the distance between points on the
embedded manifold, not arbitrary distance!

Find the Geodesic

• Generate nearest‑neighbour graph G on data

• Shortest distance between points in this graph

◦ Floyd‑Warshall algorithm (all pairs shortest path)

• PerformMDS withDX (xi, xj) = GFW(xi, xj)

Objective: min
∑
i,j

(GFW(xi, xj) − ‖ei − ej‖)2

J.B. Tenenbaum et al, A Global Geometric Framework for Nonlinear Dimensionality Reduction, 2000

Isomap
Project data fromX to E while preserving the distance between points on the
embedded manifold, not arbitrary distance!

Find the Geodesic
• Generate nearest‑neighbour graph G on data

• Shortest distance between points in this graph

◦ Floyd‑Warshall algorithm (all pairs shortest path)

• PerformMDS withDX (xi, xj) = GFW(xi, xj)

Objective: min
∑
i,j

(GFW(xi, xj) − ‖ei − ej‖)2

J.B. Tenenbaum et al, A Global Geometric Framework for Nonlinear Dimensionality Reduction, 2000

Isomap
Project data fromX to E while preserving the distance between points on the
embedded manifold, not arbitrary distance!

Find the Geodesic
• Generate nearest‑neighbour graph G on data

• Shortest distance between points in this graph
◦ Floyd‑Warshall algorithm (all pairs shortest path)

• PerformMDS withDX (xi, xj) = GFW(xi, xj)

Objective: min
∑
i,j

(GFW(xi, xj) − ‖ei − ej‖)2

J.B. Tenenbaum et al, A Global Geometric Framework for Nonlinear Dimensionality Reduction, 2000

Isomap
Project data fromX to E while preserving the distance between points on the
embedded manifold, not arbitrary distance!

Find the Geodesic
• Generate nearest‑neighbour graph G on data

• Shortest distance between points in this graph
◦ Floyd‑Warshall algorithm (all pairs shortest path)

• PerformMDS withDX (xi, xj) = GFW(xi, xj)

Objective: min
∑
i,j

(GFW(xi, xj) − ‖ei − ej‖)2

J.B. Tenenbaum et al, A Global Geometric Framework for Nonlinear Dimensionality Reduction, 2000

Isomap
Project data fromX to E while preserving the distance between points on the
embedded manifold, not arbitrary distance!

Find the Geodesic
• Generate nearest‑neighbour graph G on data

• Shortest distance between points in this graph
◦ Floyd‑Warshall algorithm (all pairs shortest path)

• PerformMDS withDX (xi, xj) = GFW(xi, xj)

Objective: min
∑
i,j

(GFW(xi, xj) − ‖ei − ej‖)2

J.B. Tenenbaum et al, A Global Geometric Framework for Nonlinear Dimensionality Reduction, 2000

Isomap
Project data fromX to E while preserving the distance between points on the
embedded manifold, not arbitrary distance!

Find the Geodesic
• Generate nearest‑neighbour graph G on data

• Shortest distance between points in this graph
◦ Floyd‑Warshall algorithm (all pairs shortest path)

• PerformMDS withDX (xi, xj) = GFW(xi, xj)

Objective: min
∑
i,j

(GFW(xi, xj) − ‖ei − ej‖)2

J.B. Tenenbaum et al, A Global Geometric Framework for Nonlinear Dimensionality Reduction, 2000

Isomap: Manifold

Data

Graph MDS
+ Floyd‑Warshall

Isomap: Manifold

Data Graph

MDS

+ Floyd‑Warshall

Isomap: Manifold

Data Graph MDS
+ Floyd‑Warshall

Isomap: Example and Issues

Issues

• requires uniform and dense
sampling onmanifold

• prone to topological
instabilities (effect of noise,
non‑convexity)

• can get disconnected graphs!

• slow with size of data —
Floyd‑Warshall is O(N3)!

Isomap: Example and Issues

Issues
• requires uniform and dense

sampling onmanifold

• prone to topological
instabilities (effect of noise,
non‑convexity)

• can get disconnected graphs!

• slow with size of data —
Floyd‑Warshall is O(N3)!

Isomap: Example and Issues

Issues
• requires uniform and dense

sampling onmanifold

• prone to topological
instabilities (effect of noise,
non‑convexity)

• can get disconnected graphs!

• slow with size of data —
Floyd‑Warshall is O(N3)!

Isomap: Example and Issues

Issues
• requires uniform and dense

sampling onmanifold

• prone to topological
instabilities (effect of noise,
non‑convexity)

• can get disconnected graphs!

• slow with size of data —
Floyd‑Warshall is O(N3)!

Isomap: Example and Issues

Issues
• requires uniform and dense

sampling onmanifold

• prone to topological
instabilities (effect of noise,
non‑convexity)

• can get disconnected graphs!

• slow with size of data —
Floyd‑Warshall is O(N3)!

Locally Linear Embeddings (LLE)
Project data fromX to E while preserving the linear transform that reconstructs
points from the K nearest neighbours

argmin
w1,...,wK

N∑
i=1

(xi −
∑

xk∈n(xi)
wkxk)2

argmin
e1,...,eN

N∑
i=1

(ei −
∑

ek∈n(ei)
wkek)2

Algorithm
1. Find the weights wk

2. Fix weights wk and find optimal embeddings ei

solved using a (sparse) eigen‑decomposition

S.T. Roweis & L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, 2000

Locally Linear Embeddings (LLE)
Project data fromX to E while preserving the linear transform that reconstructs
points from the K nearest neighbours

argmin
w1,...,wK

N∑
i=1

(xi −
∑

xk∈n(xi)
wkxk)2

argmin
e1,...,eN

N∑
i=1

(ei −
∑

ek∈n(ei)
wkek)2

Algorithm
1. Find the weights wk

2. Fix weights wk and find optimal embeddings ei

solved using a (sparse) eigen‑decomposition

S.T. Roweis & L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, 2000

Locally Linear Embeddings (LLE)
Project data fromX to E while preserving the linear transform that reconstructs
points from the K nearest neighbours

argmin
w1,...,wK

N∑
i=1

(xi −
∑

xk∈n(xi)
wkxk)2

argmin
e1,...,eN

N∑
i=1

(ei −
∑

ek∈n(ei)
wkek)2

Algorithm
1. Find the weights wk

2. Fix weights wk and find optimal embeddings ei

solved using a (sparse) eigen‑decomposition

S.T. Roweis & L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, 2000

LLE: Example and Issues

Advantages

• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues

• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

LLE: Example and Issues

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues

• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

LLE: Example and Issues

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues

• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

LLE: Example and Issues

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues

• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

LLE: Example and Issues

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues

• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

LLE: Example and Issues

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues
• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

LLE: Example and Issues

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues
• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

LLE: Example and Issues

Advantages
• globally optimal

• only bottleneck—finding ei

• not preserving specific distance

Issues
• reliance on local smoothness

• sensitive to noise

• no theoretical guarantees about
manifold

t-distributed Stochastic Neighbour Embedding (t-SNE)
Project data fromX to E while preserving the probability distribution over
pairwise similarities between points in the space.

p(xj |xi) =
exp(−‖xi − xj‖2/2𝜎2

i)∑
k≠i exp(−‖xi − xk‖2/2𝜎2

i)
(i ≠ j)

p(xi |xi) = 0
∑

i
p(xj |xi) = 1

DX (xi, xj) =
1

2N
(
p(xi |xj) + p(xj |xi)

)
DX (xi, xi) = 0

∑
ij

DX (xi, xj) = 1

DE (ei, ej) ≔ Student−t(‖ei − ej‖2, 𝜈 = 1)

DE (ei, ej) =
(
1 + ‖ei − ej‖2)−1∑

k
∑

l≠k
(
1 + ‖ek − el‖2)−1

DE (ei, ei) = 0

Student‑t allows dissimilar points inX to be

modelled far away in E!

Objective: minKL
(
DX (xi, xj)‖ DE (ei, ej)

)

L.J.P. van der Maaten & G.E. Hinton, Visualizing Data using t‑SNE, 2008

t-distributed Stochastic Neighbour Embedding (t-SNE)
Project data fromX to E while preserving the probability distribution over
pairwise similarities between points in the space.

p(xj |xi) =
exp(−‖xi − xj‖2/2𝜎2

i)∑
k≠i exp(−‖xi − xk‖2/2𝜎2

i)
(i ≠ j)

p(xi |xi) = 0
∑

i
p(xj |xi) = 1

DX (xi, xj) =
1

2N
(
p(xi |xj) + p(xj |xi)

)
DX (xi, xi) = 0

∑
ij

DX (xi, xj) = 1

DE (ei, ej) ≔ Student−t(‖ei − ej‖2, 𝜈 = 1)

DE (ei, ej) =
(
1 + ‖ei − ej‖2)−1∑

k
∑

l≠k
(
1 + ‖ek − el‖2)−1

DE (ei, ei) = 0

Student‑t allows dissimilar points inX to be

modelled far away in E!

Objective: minKL
(
DX (xi, xj)‖ DE (ei, ej)

)

L.J.P. van der Maaten & G.E. Hinton, Visualizing Data using t‑SNE, 2008

t-distributed Stochastic Neighbour Embedding (t-SNE)
Project data fromX to E while preserving the probability distribution over
pairwise similarities between points in the space.

p(xj |xi) =
exp(−‖xi − xj‖2/2𝜎2

i)∑
k≠i exp(−‖xi − xk‖2/2𝜎2

i)
(i ≠ j)

p(xi |xi) = 0
∑

i
p(xj |xi) = 1

DX (xi, xj) =
1

2N
(
p(xi |xj) + p(xj |xi)

)
DX (xi, xi) = 0

∑
ij

DX (xi, xj) = 1

DE (ei, ej) ≔ Student−t(‖ei − ej‖2, 𝜈 = 1)

DE (ei, ej) =
(
1 + ‖ei − ej‖2)−1∑

k
∑

l≠k
(
1 + ‖ek − el‖2)−1

DE (ei, ei) = 0

Student‑t allows dissimilar points inX to be

modelled far away in E!

Objective: minKL
(
DX (xi, xj)‖ DE (ei, ej)

)
L.J.P. van der Maaten & G.E. Hinton, Visualizing Data using t‑SNE, 2008

t-distributed Stochastic Neighbour Embedding (t-SNE)
Project data fromX to E while preserving the probability distribution over
pairwise similarities between points in the space.

p(xj |xi) =
exp(−‖xi − xj‖2/2𝜎2

i)∑
k≠i exp(−‖xi − xk‖2/2𝜎2

i)
(i ≠ j)

p(xi |xi) = 0
∑

i
p(xj |xi) = 1

DX (xi, xj) =
1

2N
(
p(xi |xj) + p(xj |xi)

)
DX (xi, xi) = 0

∑
ij

DX (xi, xj) = 1

DE (ei, ej) ≔ Student−t(‖ei − ej‖2, 𝜈 = 1)

DE (ei, ej) =
(
1 + ‖ei − ej‖2)−1∑

k
∑

l≠k
(
1 + ‖ek − el‖2)−1

DE (ei, ei) = 0

Student‑t allows dissimilar points inX to be

modelled far away in E!

Objective: minKL
(
DX (xi, xj)‖ DE (ei, ej)

)
L.J.P. van der Maaten & G.E. Hinton, Visualizing Data using t‑SNE, 2008

t-SNE: Examples

Figures: https://jlmelville.github.io/uwot/umap‑examples.html

t-SNE: Examples

Figures: https://jlmelville.github.io/uwot/umap‑examples.html

t-SNE: Examples

Figures: https://jlmelville.github.io/uwot/umap‑examples.html

So Far
• Different (relatively simple) aspects may be preserved in mappingX to E

• Trade‑off in terms of simplicity of assumption and ease of optimisation

• t‑SNE quite popular

◦ can incorporate both global and local structure (distributional)
◦ works on large scale and high‑dimensional data

Issue
None of these methods learn an explicitmetric

• {x1, . . . , xN}
f−→ {e1, . . . , eN} but xt

�Sf−→ et for unseen xt

• cannot project an unseen point without redoing the optimisation!

So Far
• Different (relatively simple) aspects may be preserved in mappingX to E
• Trade‑off in terms of simplicity of assumption and ease of optimisation

• t‑SNE quite popular

◦ can incorporate both global and local structure (distributional)
◦ works on large scale and high‑dimensional data

Issue
None of these methods learn an explicitmetric

• {x1, . . . , xN}
f−→ {e1, . . . , eN} but xt

�Sf−→ et for unseen xt

• cannot project an unseen point without redoing the optimisation!

So Far
• Different (relatively simple) aspects may be preserved in mappingX to E
• Trade‑off in terms of simplicity of assumption and ease of optimisation

• t‑SNE quite popular
◦ can incorporate both global and local structure (distributional)
◦ works on large scale and high‑dimensional data

Issue
None of these methods learn an explicitmetric

• {x1, . . . , xN}
f−→ {e1, . . . , eN} but xt

�Sf−→ et for unseen xt

• cannot project an unseen point without redoing the optimisation!

So Far
• Different (relatively simple) aspects may be preserved in mappingX to E
• Trade‑off in terms of simplicity of assumption and ease of optimisation

• t‑SNE quite popular
◦ can incorporate both global and local structure (distributional)
◦ works on large scale and high‑dimensional data

Issue
None of these methods learn an explicitmetric

• {x1, . . . , xN}
f−→ {e1, . . . , eN} but xt

�Sf−→ et for unseen xt

• cannot project an unseen point without redoing the optimisation!

So Far
• Different (relatively simple) aspects may be preserved in mappingX to E
• Trade‑off in terms of simplicity of assumption and ease of optimisation

• t‑SNE quite popular
◦ can incorporate both global and local structure (distributional)
◦ works on large scale and high‑dimensional data

Issue
None of these methods learn an explicitmetric

• {x1, . . . , xN}
f−→ {e1, . . . , eN} but xt

�Sf−→ et for unseen xt

• cannot project an unseen point without redoing the optimisation!

UniformManifold Approximation & Projection (UMAP)
Leverage Riemannian geometry and topology to construct a general framework
for manifold learning and dimensionality reduction.

Overview

• Use simplices as basic building block

• Estimate connectivity and distances between points

• Construct graph that captures topology of manifold!

L. McInnes et al, UMAP: UniformManifold Approximation and Projection for Dimension Reduction, 2018

UniformManifold Approximation & Projection (UMAP)
Leverage Riemannian geometry and topology to construct a general framework
for manifold learning and dimensionality reduction.

Overview
• Use simplices as basic building block

• Estimate connectivity and distances between points

• Construct graph that captures topology of manifold!

L. McInnes et al, UMAP: UniformManifold Approximation and Projection for Dimension Reduction, 2018

UniformManifold Approximation & Projection (UMAP)
Leverage Riemannian geometry and topology to construct a general framework
for manifold learning and dimensionality reduction.

Overview
• Use simplices as basic building block

• Estimate connectivity and distances between points

• Construct graph that captures topology of manifold!

L. McInnes et al, UMAP: UniformManifold Approximation and Projection for Dimension Reduction, 2018

UniformManifold Approximation & Projection (UMAP)
Leverage Riemannian geometry and topology to construct a general framework
for manifold learning and dimensionality reduction.

Overview
• Use simplices as basic building block

• Estimate connectivity and distances between points

• Construct graph that captures topology of manifold!

L. McInnes et al, UMAP: UniformManifold Approximation and Projection for Dimension Reduction, 2018

UMAP:Dimensionality Reduction
• Construct faithful topological representation of data

• Compute cross‑entropy between topological structures ofX and E in terms of the
simplices (building blocks)

• Optimise low‑dimensional representation to have minimum cross‑entropy

Advantages

• Can learn a metric, so computing xt
f−→ et for unseen xt is feasible

(when labels available)!

• Is fast and scalable

• Can be run unsupervised, supervised, or even weakly supervised!

UMAP:Dimensionality Reduction
• Construct faithful topological representation of data

• Compute cross‑entropy between topological structures ofX and E in terms of the
simplices (building blocks)

• Optimise low‑dimensional representation to have minimum cross‑entropy

Advantages

• Can learn a metric, so computing xt
f−→ et for unseen xt is feasible

(when labels available)!

• Is fast and scalable

• Can be run unsupervised, supervised, or even weakly supervised!

UMAP:Dimensionality Reduction
• Construct faithful topological representation of data

• Compute cross‑entropy between topological structures ofX and E in terms of the
simplices (building blocks)

• Optimise low‑dimensional representation to have minimum cross‑entropy

Advantages

• Can learn a metric, so computing xt
f−→ et for unseen xt is feasible

(when labels available)!

• Is fast and scalable

• Can be run unsupervised, supervised, or even weakly supervised!

UMAP:Dimensionality Reduction
• Construct faithful topological representation of data

• Compute cross‑entropy between topological structures ofX and E in terms of the
simplices (building blocks)

• Optimise low‑dimensional representation to have minimum cross‑entropy

Advantages

• Can learn a metric, so computing xt
f−→ et for unseen xt is feasible

(when labels available)!

• Is fast and scalable

• Can be run unsupervised, supervised, or even weakly supervised!

UMAP:Dimensionality Reduction
• Construct faithful topological representation of data

• Compute cross‑entropy between topological structures ofX and E in terms of the
simplices (building blocks)

• Optimise low‑dimensional representation to have minimum cross‑entropy

Advantages

• Can learn a metric, so computing xt
f−→ et for unseen xt is feasible

(when labels available)!

• Is fast and scalable

• Can be run unsupervised, supervised, or even weakly supervised!

UMAP: Examples and Comparisons

t‑S
N
E

U
M
AP

Figures: https://jlmelville.github.io/uwot/umap‑examples.html

UMAP: Examples and Comparisons

t‑S
N
E

U
M
AP

Figures: https://jlmelville.github.io/uwot/umap‑examples.html

UMAP: Examples and Comparisons

t‑S
N
E

U
M
AP

Figures: https://jlmelville.github.io/uwot/umap‑examples.html

Summary

• Non‑linear dimensionality reduction helps visualise complex data in low
dimensions—relies on the manifold hypothesis

• Can explore ways to transform data to run linear versions of algorithms
(e.g. kernel PCA)

• Most methods exploit the nearest neighbour graph in some form
(e.g. MDS, Isomap, LLE, etc.)

• Data is typically required to be clean (not much noise) and dense
…not too strong a requirement, especially with vision or language

• Many approaches to choose from—t‑SNE and UMAPmost popular

Summary

• Non‑linear dimensionality reduction helps visualise complex data in low
dimensions—relies on the manifold hypothesis

• Can explore ways to transform data to run linear versions of algorithms
(e.g. kernel PCA)

• Most methods exploit the nearest neighbour graph in some form
(e.g. MDS, Isomap, LLE, etc.)

• Data is typically required to be clean (not much noise) and dense
…not too strong a requirement, especially with vision or language

• Many approaches to choose from—t‑SNE and UMAPmost popular

Summary

• Non‑linear dimensionality reduction helps visualise complex data in low
dimensions—relies on the manifold hypothesis

• Can explore ways to transform data to run linear versions of algorithms
(e.g. kernel PCA)

• Most methods exploit the nearest neighbour graph in some form
(e.g. MDS, Isomap, LLE, etc.)

• Data is typically required to be clean (not much noise) and dense
…not too strong a requirement, especially with vision or language

• Many approaches to choose from—t‑SNE and UMAPmost popular

Summary

• Non‑linear dimensionality reduction helps visualise complex data in low
dimensions—relies on the manifold hypothesis

• Can explore ways to transform data to run linear versions of algorithms
(e.g. kernel PCA)

• Most methods exploit the nearest neighbour graph in some form
(e.g. MDS, Isomap, LLE, etc.)

• Data is typically required to be clean (not much noise) and dense
…not too strong a requirement, especially with vision or language

• Many approaches to choose from—t‑SNE and UMAPmost popular

Summary

• Non‑linear dimensionality reduction helps visualise complex data in low
dimensions—relies on the manifold hypothesis

• Can explore ways to transform data to run linear versions of algorithms
(e.g. kernel PCA)

• Most methods exploit the nearest neighbour graph in some form
(e.g. MDS, Isomap, LLE, etc.)

• Data is typically required to be clean (not much noise) and dense
…not too strong a requirement, especially with vision or language

• Many approaches to choose from—t‑SNE and UMAPmost popular

	Extensions for Linear Dimensionality Reduction
	Visualisation

