Applied Machine Learning (AML)

Clustering

Oisin Mac Aodha • Siddharth N.

Outline

- What is clustering and why is it useful?
- What kinds are there and how are they characterised?
- Explore
 - o K-Means
 - o Hierarchical Clustering
- How do we evaluate clustering?

Clustering

- Discover the underlying structure of data
- What sub-groups exist in the data
 - o # clusters, size, ...
 - o common properties within sub-group
 - o potential for further clustering

Applications

- discover classes / structure in an unsupervised manner
 - clustering images of handwritten digits (K=10)
 - o finding phylogenetic trees using DNA
- dimensionality reduction: clusters ↔ "latent factors"
 - use cluster id as representation
 - assume relevant characteristics reflected in cluster membership

Clusters in 2D

Features of Clustering Algorithms

Hard vs. Soft

Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters

Flat vs. Hierarchical

Flat: single group of clusters

Hierarchical: clusters at different levels

Monothetic vs. Polythetic

Monothetic: clustered based on common feature (e.g. hair colour) **Polythetic:** clustered based on distance measure(s) over features

K-Means

K-Means Algorithm

Require: $\mathcal{D}, K, \{x_1, \dots, x_N\}$

▶ # clusters, points 1: $\{c_1, \ldots, c_K\} \leftarrow \text{random initialisation} \triangleright \text{centroids of clusters}$

2: repeat

for ${m x}_n \in \{{m x}_1, \dots, {m x}_N\}$ do

 $c_k^* = \arg\min_{c_k} \mathcal{D}(x_n, c_k)$ > find nearest centroid id

assign point to cluster

for $c_k \in \{c_1, \dots, c_K\}$ do

▶ update cluster centroids

8: until cluster assignments do not change

K-Means

Characteristics

Hard: a point belongs to just one cluster

Flat: single level of clustering

Polythetic: distance-based similarity within clusters

Idea

Ensure points closest to some special point end up in the same cluster

- Top-down approach
- Produces a partition of the data
- Requires defining a distance metric over points

K-Means Algorithm

Require: $\mathcal{D}, K, \{x_1, \dots, x_N\}$

▶ # clusters, points

1: $\{c_1, \ldots, c_K\} \leftarrow \text{random initialisation} \triangleright \text{centroids of clusters}$

2: repeat

for $oldsymbol{x}_n \in \{oldsymbol{x}_1, \dots, oldsymbol{x}_N\}$ do

 $c_k^* = \arg\min_{c_k} \mathcal{D}(x_n, c_k) \quad \triangleright \text{ find nearest centroid id}$

 $c_{\nu}^* \leftarrow x_n$ ▶ assign point to cluster

for $c_k \in \{c_1, \dots, c_K\}$ do

▶ update cluster centroids

8: until cluster assignments do not change

K-Means Algorithm

Require: $\mathcal{D}, K, \{x_1, \ldots, x_N\}$ ▶ # clusters, points

1: $\{c_1, \ldots, c_K\} \leftarrow \text{random initialisation} \triangleright \text{centroids of clusters}$

2: repeat

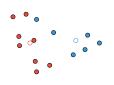
for ${m x}_n \in \{{m x}_1, \dots, {m x}_N\}$ do

 $c_k^* = \arg\min_{c_k} \mathcal{D}(x_n, c_k)$ > find nearest centroid id 4: ▶ assign point to cluster

for $c_k \in \{c_1, ..., c_K\}$ do

▶ update cluster centroids

8: until cluster assignments do not change



informatics

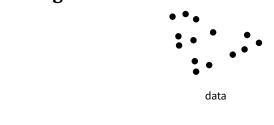
5

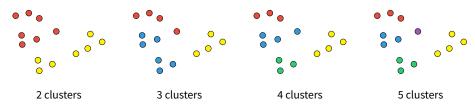
K-Means Properties

- $\bullet \ \ \ \text{Minimises aggregate intra-cluster distance:} \ \ V = \sum_k \sum_{\pmb{x}_n \to \pmb{c}_k} \mathcal{D}(\pmb{x}_n, \, \pmb{c}_k)$
 - o if $\mathcal{D}(x_n, c_k) = ||x_n c_k||_2^2$, i.e., Euclidean distance, then V is proportional to variance
- Converges to local minimum
 - o different initialisations lead to different clustering results
 - o repeat several random initialisations and pick one with smallest aggregate distance

• 'Adjacent' points can end up in different clusters

Estimating Number of Clusters



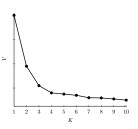


informatics

Estimating Number of Clusters

How many clusters does your data have?

- Get (*K*) from class labels (e.g. digits 0...9)
- Find an "appropriate" *K*: optimise for *V*
 - Run K-Means for K = 1, 2, ...; choose K with smallest V
 - **Issue:** What is V when K = N?
 - choose best K on validation data
 - Choose visually from a *elbow* plot
 - point that maximises the 2^{nd} derivative of V



K-Means: Example

Colour Quantisation

• Original Image: 96,615 colours

• Quantised Image: 64 colours (K-Means)

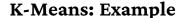
 \circ Replace pixel value x_i with cluster centroid c_k value

• Quantised Image: 64 colours (Random)

• Select random set of *K* pixels as "centroids"

• Replace pixel value x_i with nearest "centroid" value

$$m{x}_i \in \mathbb{R}^3$$
 (pixel values in RGB) $\mathcal{D}(m{x}_i,m{x}_j) = \|m{x}_i-m{x}_j\|_2^2$ $K=64$



Colour Quantisation

• Original Image: 96,615 colours

• Quantised Image: 64 colours (K-Means)

• Replace pixel value x_i with cluster centroid c_k value

• Quantised Image: 64 colours (Random)

• Select random set of *K* pixels as "centroids"

• Replace pixel value x_i with nearest "centroid" value

$$m{x}_i \in \mathbb{R}^3$$
 (pixel values in RGB) $m{\mathcal{D}}(m{x}_i,m{x}_j) = \|m{x}_i - m{x}_j\|_2^2$ $K = 64$

Random Quantised

n using K-Mpa

informatics

K-Means: Example

informatics

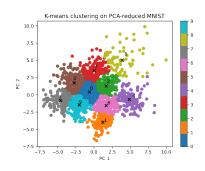
Clustering Handwritten Digits

High-dimensional data

• Dimensionality reduction (e.g. PCA)

K-Means on embeddings

$$m{x} \in \mathbb{R}^{784}$$
 $m{e} \in \mathbb{R}^2$ (PCA) $m{\mathcal{D}}(m{x}_i, m{x}_j) = \|m{e}_i - m{e}_j\|_2^2$ $K = 10$



Hierarchical Clustering

informatics

Hierarchical Clustering

Choosing number of clusters

- Depends a lot on *granularity*
 - o data (e.g. satellite maps—how much does 1 pixel cover?)
 - o context—what do we care about? High vs. low level?
- No magical algorithm to give you correct K

Find a hierarchy of structure

- Upper levels: coarse groups (e.g. collection of objects; bedroom, kitchen, etc.)
- Lower levels: fine-grained (e.g. object parts; chair leg, table top, etc.)
- Stategies
 - Top-Down: start with everything in one cluster, then split recursively
 - o Bottom-up: start with each item separately, then merge recursively

Hierarchical K-Means

- Top-Down approach
- o perform K-Means on data
- \circ for each resulting cluster c_i , run K-Means within c_i
- Fast: recursive calls on successively smaller datasets
- Greedy: once cluster has been determined at top level; cannot change

informatics

9

11

Agglomerative Clustering

Characteristics

Hard: a point belongs to just one cluster

Hierarchical: multiple levels of clustering

Polythetic: distance-based similarity within clusters

Idea

Ensure "nearby" points end up in the same cluster

- Bottom-up approach
- Generates a dendrogram: hierarchical tree of clusters
- Requires defining a distance metric over *clusters*

Agglomerative Clustering: Sketch

 $\mathcal{D}(x_l, x_m)$ —distance between *points*

 $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

Require: $\mathcal{G}_{\mathcal{D}}$, $\{x_1, \dots, x_N\}$ ▶ points 1: $C = \{c_1, \dots, c_N\} = \{\{x_1\}, \dots, \{x_N\}\}$ ▶ initial clusters

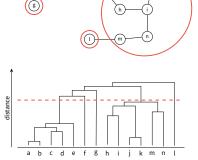
2: repeat

 $c_i^*, c_i^* = \arg\min \mathcal{G}_{\mathcal{D}}(c_i, c_j)$ ▶ find closest pair

▶ merge into new cluster $C = C \setminus \{\boldsymbol{c}_{s}^{*}, \boldsymbol{c}_{s}^{*}\}$ ▶ remove pair of clusters

 $C = C \cup \{c_{i \cdot i}\}$ ▶ add merged cluster

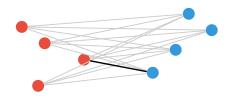
7: until only one cluster remaining



Cluster Distance Measures

Single Link

$$\mathcal{G}_{\mathcal{D}}(extbf{ extit{c}}_i, extbf{ extit{c}}_j) = \min_{egin{array}{c} x_{i,l} \in extit{c}_i \ x_{j,m} \in extit{c}_j \ \end{array}} \mathcal{D}(extbf{ extit{x}}_{i,l}, extbf{ extit{x}}_{j,m})$$

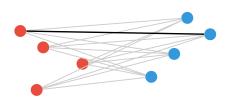


informatics

Cluster Distance Measures

Complete Link

$$egin{aligned} \mathcal{G}_{\mathcal{D}}(oldsymbol{c}_i, oldsymbol{c}_j) &= \max_{oldsymbol{x}_{i,l} \in oldsymbol{c}_i} \mathcal{D}(oldsymbol{x}_{i,l}, oldsymbol{x}_{j,m}) \ &x_{j,m} \in oldsymbol{c}_j \end{aligned}$$

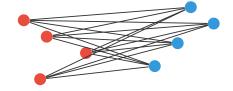


13 THE UNIVERSITY OF EDINBURGH Informatics

Cluster Distance Measures

Average Link

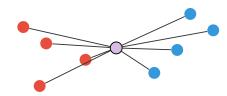
$$egin{aligned} \mathcal{G}_{\mathcal{D}}(oldsymbol{c}_i, oldsymbol{c}_j) &= rac{1}{|oldsymbol{c}_i| \, |oldsymbol{c}_j|} \sum_{oldsymbol{x}_{i,l} \in oldsymbol{c}_i \ oldsymbol{x}_{j,m} \in oldsymbol{c}_j} \mathcal{D}(oldsymbol{x}_{i,l}, oldsymbol{x}_{j,m}) \end{aligned}$$



Cluster Distance Measures

Ward's Method

$$ar{x}_{ij} = rac{1}{|oldsymbol{c}_{ij}|} \sum_{oldsymbol{x}_l \in oldsymbol{c}_{ij}} oldsymbol{x}_l \qquad \qquad (oldsymbol{c}_{ij} = oldsymbol{c}_i \cup oldsymbol{c}_j)$$
 $oldsymbol{\mathcal{G}}_{\mathcal{D}}(oldsymbol{c}_i, oldsymbol{c}_j) = rac{1}{|oldsymbol{c}_{ij}|} \sum_{oldsymbol{x}_l \in oldsymbol{c}_{ij}} \|oldsymbol{x}_l - ar{oldsymbol{x}}_{ij}\|^2$



13

Unified Formulation

Lance-Williams Algorithm

- ullet When merging two clusters to get $c_{i\cdot j}$
- Need to compute updated distances to all other clusters

For each remaining cluster c_k , denoting $G_{i,j} = \mathcal{G}_{\mathcal{D}}(c_i, c_j)$

$$G_{k,i,j} = \alpha_i G_{k,i} + \alpha_j G_{k,j} + \beta G_{i,j} + \gamma |G_{k,i} - G_{k,j}|$$

Method	$lpha_i$	$lpha_j$	β	γ
Single Link	0.5	0.5	0	-0.5
Complete Link	0.5	0.5	0	0.5
Average Link	$\frac{ c_i }{ c_i + c_i }$	$\frac{ c_j }{ c_i + c_i }$	0	0
Ward's Method	$\frac{ c_i + c_k }{ c_i + c_j + c_k }$	$\frac{ c_j + c_k }{ c_i + c_j + c_k }$	$\frac{- c_k }{ c_i + c_j + c_k }$	0

Evaluation

Extrinsic

Helps solve downstream task

- Quantisation: represent data with cluster features
 - colour quantisation—use centroid value
 - feature extraction—use cluster index
- Partition: treat clusters as different datasets
 - train separate classifiers for each sub-group
- o e.g. MNIST 1 vs. not 1; 2 vs. not 2 ...
- Key: Does it help perform task better?

Evaluation

Evaluation

Intrinsic

Helps understand qualitative makeup of data

- Unsupervised: measure how well-separated clusters are
 - o compare intra-cluster distances to inter-cluster distances
 - e.g. silhouette scores
- Supervised: measure alignment of clusters to known labels
 - o can treat as evaluation of classification
 - o reason in terms of pairs belonging to cluster / label
 - **issue:** # cluster ≠ # labels
- Human: compare judgements to humans on exemplars
 - o ask human if pair x_i , x_j belong together
 - $\circ~$ compute match between human judgements and predictions: F1-score, $\kappa,$ etc.

Intrinsic Evaluation: Unsupervised

In the absence of labels, or any other external measure of utility, can compute a generic measure of how well-clustered the data is.

Silhouette Score

Let data point $x_l \in c_i$ be denoted $x_{i,l}$, then

$$a_l = \frac{1}{|\boldsymbol{c}_i| - 1} \sum_{\substack{\boldsymbol{x}_{i,m} \in \boldsymbol{c}_i \\ m \neq l}} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{i,m})$$

$$a_l = \frac{1}{|\boldsymbol{c}_i| - 1} \sum_{\boldsymbol{x}_{i,m} \in \boldsymbol{c}_i} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{i,m}) \qquad b_l = \min_{j \neq i} \frac{1}{|\boldsymbol{c}_j|} \sum_{\boldsymbol{x}_{j,m} \in \boldsymbol{c}_j} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{j,m})$$

mean distance within cluster

mean distance with nearest cluster

$$s_l = \frac{b_l - a_l}{\max\{a_l, b_l\}} \quad |c_i| > 1$$

$$s_{l} = \frac{b_{l} - a_{l}}{\max\{a_{l}, b_{l}\}} \quad |c_{i}| > 1 \qquad \qquad s = \frac{1}{N} \sum_{l=1}^{N} s_{l} \qquad -1 \le s \le 1$$

informatics

informatics

Intrinsic Evaluation: Supervised

Issue: Alignment

Clustering produces clusters $C = \{c_1, \ldots, c_U\}$ Labels induce reference clusters $\mathcal{R} = \{r_1, \dots, r_V\}$

- if U = V
 - still cannot compare directly—permutation unknown!
 - which u corresponds to which v?
 - o if $u \leftrightarrow v$ matching known standard measures: accuracy, F1-score, etc.
- if $U \neq V$
 - need to also find best alignment
 - o can have multiple $c_u \rightarrow same r_v$
 - o can have multiple $r_v \rightarrow same \ c_u$

Intrinsic Evaluation: Supervised

Key Idea: Evaluate relationship between pairs of data points x_l, x_m

Rand Index (RI)

- $+: x_l, x_m$ are in the same cluster
- $-: x_l, x_m$ are in different clusters

$$RI = \frac{TP + TN}{TP + TN + FP + FN}$$
$$= Accuracy!$$

Intrinsic Evaluation: Supervised

Issue: Expected value of RI of two random partitions $\neq 0$ (or any constant)

Adjusted Rand Index (ARI)

	$ c_1 $			$oldsymbol{c}_U$	
$oldsymbol{r}_1$	N_{11}	N_{12}		N_{1U}	a_1
\boldsymbol{r}_2	N_{21}	N_{22}		N_{2U}	a_2
:	:	:	٠	:	<u>:</u>
$oldsymbol{r}_V$	N_{V1}	N_{V2}	• • •	$egin{array}{c} N_{1U} \ N_{2U} \ dots \ N_{VU} \end{array}$	a_V
				b_U	

$$N_{ij} = |\boldsymbol{r}_i \cap \boldsymbol{c}_j| \quad {N \choose 2} = \frac{N(N-1)}{2}$$

$$\mathsf{TP} = \sum_{ij} \binom{N_{ij}}{2}$$

Expected RI =
$$\frac{1}{\binom{N}{2}} \left[\sum_{v} \binom{a_v}{2} \cdot \sum_{u} \binom{b_u}{2} \right]$$

$$\operatorname{Max} \operatorname{RI} = \frac{1}{2} \left[\sum_{v} \binom{a_v}{2} + \sum_{u} \binom{b_u}{2} \right]$$

$$ARI = \frac{TP - Expected RI}{Max RI - Expected RI}$$

Summary

- Clustering: Means of discovering structure / sub-groups in data
- K-Means
 - o Hard; Flat; Polythetic
- Requires knowing K; search for best K
- o Fast; Iterative; Local Minima
- Hierarchical Clustering
 - o Hard; Hierarchical; Polythetic
- o Top-Down: Hierarchical K-Means
- o Bottom-Up: Agglomerative Clustering
- o multiple variants: single, complete, etc.
- Evaluation
- o Unsupervised, Supervised, and Human-judgement driven

