

Applied Machine Learning (AML)

Class Starting at 4:10pm

Oisin Mac Aodha • Siddharth N.

Applied Machine Learning

Week 6: Optimisation and Generalisation

This slides will be made available on the project website after the class. This session will be recorded.

Overview

- 1) Outline your tasks this for week
- 2) Discussion of Week 5's topics

Week 6: Your tasks for this week

- 1) Complete Tutorial 2 solutions will be released later this week
- 2) Watch videos for week 6 Evaluation and Model Selection
- 3) Ask questions on Piazza if stuck
- 4) Continue working on the coursework
- 5) Start Lab 3 which takes places next week link in week 7

Coursework - Progress Report

- Not mandatory or assessed; but highly recommended
- A 'check-in' to see how everyone is doing
- Report Wed 30 Oct 5pm
 - min 1-page interim report
 - include a section each on 'Current Progress' and 'Plans for Completion'
- Feedback Fri 01 Nov 1-3pm [AT 5.04]
 - intention not for detailed individual feedback; coarse level
 - primarily to identify those not yet started or doing very wrong things!
 - collective feedback to class after

Coursework Discussion on Piazza

- Please mark questions about coursework project as private.
- Ensure that the question is visible by all the instructors.
- Potential for too much discussion for each group to keep track of.
- We will compile all the relevant feedback into an FAQ on the course website—updated as and when relevant.

Wooclap

Bias and Variance

Expected Target Error

Targets sampled as $y \sim p_{\mathcal{D}}(y|\mathbf{x})$.

$$\mathbb{E}\left[(\hat{y}-y)^2|\boldsymbol{x}\right] = \mathbb{E}\left[\hat{y}^2 - 2\hat{y}y + y^2|\boldsymbol{x}\right]$$

$$= \hat{y}^2 - 2\hat{y}\,\mathbb{E}\left[y|\boldsymbol{x}\right] + \mathbb{E}\left[y^2|\boldsymbol{x}\right] \qquad \text{(linearity of expectation)}$$

$$= \hat{y}^2 - 2\hat{y}\,\mathbb{E}\left[y|\boldsymbol{x}\right] + \mathbb{E}\left[y|\boldsymbol{x}\right]^2 + \mathrm{Var}\left[y|\boldsymbol{x}\right] \qquad \text{(expression for variance)}$$

$$= (\hat{y} - \mathbb{E}\left[y|\boldsymbol{x}\right])^2 + \mathrm{Var}\left[y|\boldsymbol{x}\right]$$

$$\triangleq (\hat{y} - y_{\star})^2 + \mathrm{Var}\left[y|\boldsymbol{x}\right]$$
residual Bayes error

Bias and Variance

Expected Test Error

Assume model (p_w) trained on $\mathcal{D} \sim p_{\mathcal{D}}(x, y)$; compute predictions on x. Predictions generated as $\hat{y} \sim p_w(\hat{y}|x)$.

$$\mathbb{E}[(\hat{y} - y)^{2}] = \mathbb{E}[(\hat{y} - y_{\star})^{2}] + \operatorname{Var}[y]$$

$$= \mathbb{E}[y_{\star}^{2} - 2\hat{y}y_{\star} + \hat{y}^{2}] + \operatorname{Var}[y]$$

$$= y_{\star}^{2} - 2y_{\star} \mathbb{E}[\hat{y}] + \mathbb{E}[\hat{y}^{2}] + \operatorname{Var}[y] \qquad \text{(linearity of expectation)}$$

$$= y_{\star}^{2} - 2y_{\star} \mathbb{E}[\hat{y}] + \mathbb{E}[\hat{y}]^{2} + \operatorname{Var}[\hat{y}] + \operatorname{Var}[y] \qquad \text{(expression for variance)}$$

$$= \underbrace{(y_{\star} - \mathbb{E}[\hat{y}])^{2}}_{\text{bias}} + \underbrace{\operatorname{Var}[\hat{y}]}_{\text{variance}} + \underbrace{\operatorname{Var}[y]}_{\text{Bayes error}}$$

Bias and Variance: Schematic

Generalisation Error:

average squared length of residual $||\hat{y} - y||^2$

Bias:

average squared length of bias $||y_{\star} - \mathbb{E}[\hat{y}]||^2$

Variance: spread of green ×'s

Bayes error: spread of black ×'s

