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Comparing Point Estimates

D= {Dtrain’ Dtest} Dtrain N Diest = 0
Naive Bayes (A) Logistic Regression (B)
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Comparing Point Estimates

D= {Dtrain’ Dtest} Dtrain N Diest = 0
Naive Bayes (A) Logistic Regression (B)
Acc 79.3% 78.1%
K 61.9% 60.3%
F1-score 86.1% 82.4%
ROCAUC 50.1% < 50.4%
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Comparing Point Estimates

’

D= {Dtrain’ Dtest} Dtrain N Diest = 0
Naive Bayes (A) Logistic Regression (B)
Acc 79.3% 78.1%
K 61.9% 60.3%
F1-score 86.1% 82.4%
ROCAUC 50.1% < 50.4%

Point estimates can be susceptible to many kinds of random effects!
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Comparison with Tradeoff

AUC of Precision-Recall
B ® Which model is better?
® Choice can depend on trade-off

o lower recall, higher precision (¢1): A > B
o lower precision, higher recall (cg): B > A

Precision

C1

A ® Random effects (e.g. data split) can
make comparison hard

c2

Recall
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Embracing Uncertainty

Dataset partitioning (e.g. cross validation)
{Dl Z)tlest}’{Z)2 thest ""’{DK Dt]e(st

train’ train® train®
A>B A>B B>A
Model (e.g. stochastic linear regression) S
n“t‘““\“\“\\
yi=wo+wizi+€ € ~N(0,1) S

Learning algorithm (e.g. SGD)

initialisation effects
local minima
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Compute the difference in mean error

what difference is enough to decide B> A?
does the spread / variance affect this choice?

Difficult to provide a general approach to say one
model is “better” than another

Weaker, but feasible, approach:

How likely is it that the observed disparities are
due to chance?
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Preliminaries

Population vs. Sample statistics

Population: All the elements from a set

E.g. All leave-1-out splits of the dataset

Sample: Observations drawn from population

E.g. Some N splits of the dataset
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Preliminaries

Central Limit Theorem (CLT)
For a set of samples zy, ..., x, ... from a population

with expected mean y and finite variance o

z-p
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Preliminaries

Central Limit Theorem (CLT)
For a set of samples zy, ..., x, ... from a population

with expected mean y and finite variance o

_ Tk
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Student’s- ¢ distribution

® CLT: (weak) convergenceto N(0,1) as N — oo

e for smaller N, not Gaussian!
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0.5

Student’s-{ distribution — Student’s £(0.1)

o N(0,1)

® CLT: (weak) convergenceto N(0,1) as N — oo

0.3
e for smaller N, not Gaussian!
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Statistical Testing: A Sketch

® Examine the mean of a set of samples
e.g. difference in classification errors
] — tendency towards Gaussian

® For some assumptions about the
population: mean, variance (?)

How likely is this observed sample mean
value to have arisen by chance?
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Statistical Testing: A Sketch

® Examine the mean of a set of samples Gaussian
e.g. difference in classification errors
] — tendency towards Gaussian

® For some assumptions about the

T+ 1o T+20 T+30
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population: mean, variance (?)

How likely is this observed sample mean Student's-t (v = 9)
value to have arisen by chance?

A common framework to evaluate
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chance occurrence.
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Statistical Tests

Hypothesis Testing




Hypothesis Testing

@ informatics



Hypothesis Testing

® Formally examine two opposing
conjectures (hypothesis): Hy and H;
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Hypothesis Testing

® Formally examine two opposing
conjectures (hypothesis): Hy and H;

® Mutually exclusive and exhaustive:
Hy=True — H; = False

® Analyse data to determine which is
True and whichis False

Decision (Retain)

Hy Hy
Hy v Typell
9}
2
'—
Hy | Typel v
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Hypothesis Testing: Variants

® Testtype

ztest: Gaussian distribution
t-test: Student’s ¢ distribution
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Hypothesis Testing: Variants

® Testtype

ztest: Gaussian distribution
t-test: Student’s ¢ distribution

® One or Two sided
one: Hy : p —p? <0 Hy:p” —p” >0 (directional)
Two: Hy: p —p? =0 Hy:p' —p” #0 (not directional)

® Test Statistic
One-Sample: compare sample to population with known characteristics
Two-Sample: compare two samples; typically experiment vs. control (e.g. vaccines)
Paired: one-sample test on difference between samples




Hypothesis Testing: Variants

® Testtype
ztest: Gaussian distribution

® One or Two sided

one: Hy : p —p? <0 Hy:p” —p” >0 (directional)
A_ B A_ B

® Test Statistic

One-Sample: compare sample to population with known characteristics
Two-Sample: compare two samples; typically experiment vs. control (e.g. vaccines)




Example: Hypothesis Testing for Models

Generating Variation
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Hy:p?=0 o =5% (significance)
Hi:p?#0 N=20
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Student’s-t (v = 19)
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j'; Hy:p=0 a=5% (significance)
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Hypothesis Testing: Caveats
Rejecting Hy does not imply 100% sure Hy is False

Failing to reject Hy does notimply Hyis True

Confidence level (a = 0.05) is from convention; not always best

Statistical significance does not imply practical relevance
o Rejecting Hy : u% = 0 only tells us that u¢ # 0 but not how big or important the difference is
o Remedy: Report confidence interval (Cl)
- S
d=+clgo —
a/ \/N
which, for our example would be

5.27
2.53+2.093 - — (e = 0.05, c|g.05 = 2.093)
V20

2.53 £2.47
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Cross Validation for Variation: Caveat

® Recall that CLT requires the samples to be
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Cross Validation for Variation: Caveat

® Recall that CLT requires the samples to be

® Simple cross-validation can violate that independence (overlap in D, . 1)

Data Split A B d

A B B A
{Dl Dtlest} [1 [1 [1 _f1

train’

A B B A
{Dz Dthst} [2 f2 [2 _f2

train’
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Cross Validation for Variation: Caveat

® Recall that CLT requires the samples to be
® Simple cross-validation can violate that independence (overlap in D, . 1)

Data Split A B d

A B B A
{Dl Dtlest} [1 [1 f1 _f1

train’

A B B A
{Dz Dthst} f2 fz [2 _f2

train’

® Solutions:
o 5x2 Cross Validation [1]

o Adjust standard deviation to account for imbalance [2]
o ...and many more (ANOVA, Non-parametric tests, etc.)!

1. T. G. Dietterich, Approximate Statistical Tests for Comparing Supervised Classification Learning
2. C. Nadeau &Y. Bengio, Inference for the Generalization Error, 2003

1998



Summary

Being able to compare models and experiments is both a science and an art!

Most important aspect is to think what sources of variability affects results, and how
large their effects are likely to be.




Summary

Being able to compare models and experiments is both a science and an art!

Most important aspect is to think what sources of variability affects results, and how
large their effects are likely to be.

® Some measures incorporate context; use it! (P-R, ROC)

® For when statistical tests are required (not always!)

o ensure your assumptions on the model / data are clearly stated
o ensure assumptions of the test are met

® Performance on error measures not all—speed, use of resources, and ease of
implementation can, and should, affect preference!

@ informatics



	Direct Comparison
	Statistical Tests
	Hypothesis Testing


