

Applied Machine Learning (AML)

Model Selection

Oisin Mac Aodha • Siddharth N.

Direct Comparison

email

"send us your password"

"send us review"

"review your account"

"review us"

"send your password"

"send us your account"

:

email	true		
"send us your password"	+	Acc	
"send us review"	_	κ	
"review your account"	_	F1-score	
"review us"	+	ROC AUC	
"send your password"	+	:	
"send us your account"	+		
:			

email	true	pred (A)	
"send us your password"	+	+	
"send us review"	_	+	
"review your account"	_	_	
"review us"	+	-	
"send your password"	+	+	
"send us your account"	+	+	
:			

	Naive Bayes (A)				
Acc	72.6%				
κ	54.1%				
F1-score	85.6%				
ROC AUC	48.4%				
÷	:				

email	true	pred (A)	pred (B)
"send us your password"	+	+	+
"send us review"	_	+	_
"review your account"	-	_	+
"review us"	+	_	_
"send your password"	+	+	+
"send us your account"	+	+	_
:			

	Naive Bayes (A)	Logistic Regression (B)		
Acc	72.6%	84.5%		
κ	54.1%	66.2%		
F1-score	85.6%	89.1%		
ROC AUC	48.4%	55.7%		
÷	:	:		

email	true	pred (A)	pred (B)		Naive Bayes (A)	Logistic Regression (B)
"send us your password"	+	+	+	Acc	72.6%	84.5%
"send us review"	_	+	_	κ	54.1%	66.2%
"review your account"	_	_	+	F1-score	85.6%	89.1%
"review us"	+	_	_	ROC AUC	48.4%	55.7%
"send your password"	+	+	+	:	:	:
"send us your account"	+	+	_			
:						

Clearly, logistic regression (B) has higher scores than naive Bayes (A)!

email	true	pred (A)	pred (B)		Naive Bayes (A)	Logistic Regression (B)
"send us your password"	+	+	+	Acc	72.6%	84.5%
"send us review"	_	+	_	κ	54.1%	66.2%
"review your account"	_	_	+	F1-score	85.6%	89.1%
"review us"	+	_	_	ROC AUC	48.4%	55.7%
"send your password"	+	+	+	:	:	:
"send us your account"	+	+	_	·		·
:						

Clearly, logistic regression (B) has higher scores than naive Bayes (A)!

Should we choose B over A?

email	true	pred (A)	pred (B)		Naive Bayes (A)	Logistic Regression (B)
"send us your password"	+	+	+	Acc	72.6%	84.5%
"send us review"	_	+	_	κ	54.1%	66.2%
"review your account"	_	_	+	F1-score	85.6%	89.1%
"review us"	+	_	_	ROC AUC	48.4%	55.7%
"send your password"	+	+	+	:	:	:
"send us your account"	+	+	_			
i i						

Clearly, logistic regression (B) has higher scores than naive Bayes (A)!

Should we choose B over A? maybe?

$$\mathcal{D} = \{\mathcal{D}_{\mathsf{train}}, \mathcal{D}_{\mathsf{test}}\} \qquad \mathcal{D}_{\mathsf{train}} \cap \mathcal{D}_{\mathsf{test}} = \emptyset$$

$$\mathcal{D} = \{\mathcal{D}_{\text{train}}, \mathcal{D}_{\text{test}}\} \qquad \mathcal{D}_{\text{train}} \cap \mathcal{D}_{\text{test}} = \emptyset$$

$$\frac{\text{Naive Bayes (A)}}{72.6\%} \qquad \text{Logistic Regression (B)}$$

$$\kappa \qquad 54.1\% \qquad < \qquad 66.2\%$$

$$\text{F1-score} \qquad 85.6\% \qquad < \qquad 89.1\%$$

$$\text{ROC AUC} \qquad 48.4\% \qquad < \qquad 55.7\%$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathcal{D} = \{\mathcal{D}_{\mathsf{train}}^{'}, \mathcal{D}_{\mathsf{test}}^{'}\} \qquad \mathcal{D}_{\mathsf{train}}^{'} \cap \mathcal{D}_{\mathsf{test}}^{'} = \emptyset$$

Point estimates can be susceptible to many kinds of random effects!

AUC of Precision-Recall

• Which model is better?

- Which model is better?
- Choice can depend on trade-off

- Which model is better?
- Choice can depend on trade-off
 - lower recall, higher precision (c_1): A > B

- Which model is better?
- Choice can depend on trade-off
 - lower recall, higher precision (c_1): A > B
 - lower precision, higher recall (c_2): B > A

- Which model is better?
- Choice can depend on trade-off
 - lower recall, higher precision (c_1): A > B
 - lower precision, higher recall (c_2): B > A
- Random effects (e.g. data split) can make comparison hard

Variation in error

• Dataset partitioning (e.g. cross validation)

Variation in error

Dataset partitioning (e.g. cross validation)

```
\{\mathcal{D}_{\mathsf{train}}^1, \mathcal{D}_{\mathsf{test}}^1\}, \{\mathcal{D}_{\mathsf{train}}^2, \mathcal{D}_{\mathsf{test}}^2\}, \dots, \{\mathcal{D}_{\mathsf{train}}^K, \mathcal{D}_{\mathsf{test}}^K\}
```

Variation in error

Dataset partitioning (e.g. cross validation)

```
\begin{split} \{\mathcal{D}_{\mathsf{train}}^1, \mathcal{D}_{\mathsf{test}}^1\}, \{\mathcal{D}_{\mathsf{train}}^2, \mathcal{D}_{\mathsf{test}}^2\}, \dots, \{\mathcal{D}_{\mathsf{train}}^K, \mathcal{D}_{\mathsf{test}}^K\} \\ & \mathsf{A} \!\!\!\!\! \mathsf{>} \, \mathsf{B} & \mathsf{A} \!\!\!\!\!\! \mathsf{>} \, \mathsf{B} & \dots & \mathsf{B} \!\!\!\!\!\!\!\!\!\!\mathsf{>} \, \mathsf{A} \end{split}
```

Variation in error

Dataset partitioning (e.g. cross validation)

```
\begin{split} \{\mathcal{D}_{\mathsf{train}}^1, \mathcal{D}_{\mathsf{test}}^1\}, \{\mathcal{D}_{\mathsf{train}}^2, \mathcal{D}_{\mathsf{test}}^2\}, \dots, \{\mathcal{D}_{\mathsf{train}}^K, \mathcal{D}_{\mathsf{test}}^K\} \\ & \mathsf{A} \!\!\!\!\! \mathsf{B} & \mathsf{A} \!\!\!\!\! \mathsf{B} & \dots & \mathsf{B} \!\!\!\!\!\!\!\mathsf{>} \, \mathsf{A} \end{split}
```

Model (e.g. stochastic linear regression)

Variation in error

Dataset partitioning (e.g. cross validation)

```
\begin{split} \{\mathcal{D}_{\mathsf{train}}^1, \mathcal{D}_{\mathsf{test}}^1\}, \{\mathcal{D}_{\mathsf{train}}^2, \mathcal{D}_{\mathsf{test}}^2\}, \dots, \{\mathcal{D}_{\mathsf{train}}^K, \mathcal{D}_{\mathsf{test}}^K\} \\ & \mathsf{A} \!\!\!\!\! \mathsf{B} & \mathsf{A} \!\!\!\!\! \mathsf{B} & \dots & \mathsf{B} \!\!\!\!\!\!\mathsf{>} \mathsf{A} \end{split}
```

Model (e.g. stochastic linear regression)

```
y_i = w_0 + w_1 x_i + \epsilon_i \quad \epsilon_i \sim \mathcal{N}(0, 1)
```

Variation in error

Dataset partitioning (e.g. cross validation)

$$\begin{split} \{\mathcal{D}_{\text{train}}^1, \mathcal{D}_{\text{test}}^1\}, \{\mathcal{D}_{\text{train}}^2, \mathcal{D}_{\text{test}}^2\}, \dots, \{\mathcal{D}_{\text{train}}^K, \mathcal{D}_{\text{test}}^K\} \\ & \quad \text{A> B} \quad \quad \text{A> B} \quad \quad \text{B> A} \end{split}$$

Model (e.g. stochastic linear regression)

$$y_i = w_0 + w_1 x_i + \epsilon_i \quad \epsilon_i \sim \mathcal{N}(0, 1)$$

- Learning algorithm (e.g. SGD)
 - initialisation effects
 - local minima

informatics

• Compute the difference in *mean* error

informatics

- Compute the difference in *mean* error
 - what difference is enough to decide B> A?

informatics

- Compute the difference in *mean* error
 - what difference is enough to decide B> A?
 - odoes the spread / variance affect this choice?

- Compute the difference in *mean* error
 - what difference is enough to decide B> A?
 - does the spread / variance affect this choice?
- Difficult to provide a general approach to say one model is "better" than another

- Compute the difference in mean error
 - what difference is enough to decide B> A?
 - o does the spread / variance affect this choice?
- Difficult to provide a general approach to say one model is "better" than another
 - Weaker, but feasible, approach:
 How likely is it that the observed disparities are due to chance?

Statistical Tests

Population vs. Sample statistics

Population vs. Sample statistics

Population: All the elements from a set

E.g. All leave-1-out splits of the dataset

Population vs. Sample statistics

Population: All the elements from a set

E.g. All leave-1-out splits of the dataset

Sample: Observations drawn from population

E.g. Some N splits of the dataset

If sample set is x_1, \ldots, x_N

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

*Bessel's correction

Central Limit Theorem (CLT)

For a set of samples x_1,\ldots,x_N,\ldots from a population with expected mean μ and finite variance σ^2

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{N}} \sim \mathcal{N}(0, 1) \quad \text{as } N \to \infty$$

Central Limit Theorem (CLT)

For a set of samples x_1, \ldots, x_N, \ldots from a population with expected mean μ and finite variance σ^2

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{N}} \sim \mathcal{N}(0, 1) \quad \text{as } N \to \infty$$

Central Limit Theorem (CLT)

For a set of samples x_1,\ldots,x_N,\ldots from a population with expected mean μ and finite variance σ^2

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{N}} \sim \mathcal{N}(0, 1) \quad \text{as } N \to \infty$$

Central Limit Theorem (CLT)

For a set of samples x_1,\ldots,x_N,\ldots from a population with expected mean μ and finite variance σ^2

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{N}} \sim \mathcal{N}(0, 1)$$
 as $N \to \infty$

Central Limit Theorem (CLT)

For a set of samples x_1,\ldots,x_N,\ldots from a population with expected mean μ and finite variance σ^2

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{N}} \sim \mathcal{N}(0, 1) \quad \text{as } N \to \infty$$

Assume

- population μ known
- population σ^2 known

Student's-t distribution

• CLT: (weak) convergence to $\mathcal{N}(0,1)$ as $N \to \infty$

- CLT: (weak) convergence to $\mathcal{N}(0,1)$ as $N \to \infty$
- for smaller N, not Gaussian!

- CLT: (weak) convergence to $\mathcal{N}(0,1)$ as $N \to \infty$
- for smaller N, not Gaussian!

$$f(t, v) = \frac{\Gamma(\frac{v+1}{2})}{\sqrt{v\pi} \Gamma(\frac{v}{2})} \left(1 + \frac{t^2}{v}\right)^{-(v+1)/2}$$

- CLT: (weak) convergence to $\mathcal{N}(0,1)$ as $N \to \infty$
- for smaller N, not Gaussian!

$$f(t, v) = \frac{\Gamma(\frac{v+1}{2})}{\sqrt{v\pi} \Gamma(\frac{v}{2})} \left(1 + \frac{t^2}{v}\right)^{-(v+1)/2}$$

Student's-t distribution

- CLT: (weak) convergence to $\mathcal{N}(0,1)$ as $N \to \infty$
- for smaller N, not Gaussian!

Assume

- population μ known
- population σ^2 unknown
- estimate sample variance $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \overline{x}_N)^2$

$$f(t, v) = \frac{\Gamma(\frac{v+1}{2})}{\sqrt{v\pi} \Gamma(\frac{v}{2})} \left(1 + \frac{t^2}{v}\right)^{-(v+1)/2}$$

Student's-t distribution

- CLT: (weak) convergence to $\mathcal{N}(0,1)$ as $N \to \infty$
- for smaller N, not Gaussian!

Assume

- population μ known
- population σ^2 unknown
- estimate sample variance $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \overline{x}_N)^2$

$$t = \frac{\overline{x} - \mu}{c/\sqrt{N}}, \quad v = N - 1$$

$$f(t, v) = \frac{\Gamma(\frac{v+1}{2})}{\sqrt{v\pi} \Gamma(\frac{v}{2})} \left(1 + \frac{t^2}{v}\right)^{-(v+1)/2}$$

Examine the *mean* of a set of samples
 e.g. difference in classification errors

- Examine the *mean* of a set of samples
 e.g. difference in classification errors
- Why? tendency towards Gaussian

- Examine the *mean* of a set of samples
 e.g. difference in classification errors
- Why? tendency towards Gaussian
- For some assumptions about the population: mean, variance (?)
 How likely is this observed sample mean value to have arisen by chance?

- Examine the *mean* of a set of samples
 e.g. difference in classification errors
- Why? tendency towards Gaussian
- For some assumptions about the population: mean, variance (?)
 How likely is this observed sample mean value to have arisen by chance?

- Examine the *mean* of a set of samples
 e.g. difference in classification errors
- Why? tendency towards Gaussian
- For some assumptions about the population: mean, variance (?)
 How likely is this observed sample mean value to have arisen by chance?

A common framework to evaluate chance occurrence.

Statistical Tests

Hypothesis Testing

 Formally examine two opposing conjectures (hypothesis): H₀ and H₁

 Formally examine two opposing conjectures (hypothesis): H₀ and H₁

Null Hypothesis: H_0

- States the assumption to be tested
- Begin with assumption that $H_0 = \text{True}$
- Always evaluates (partial) equality $(=, \le, \ge)$

 Formally examine two opposing conjectures (hypothesis): H₀ and H₁

Null Hypothesis: H_0

- States the assumption to be tested
- Begin with assumption that $H_0 = \text{True}$
- Always evaluates (partial) equality $(=, \leq, \geq)$

- States the assumption believed to be True
- Evaluate if evidence supports assumption
- Always evaluates (strict) inequality (≠, >, <)

- Formally examine two opposing conjectures (hypothesis): H₀ and H₁
- Mutually exclusive and exhaustive:

$$H_0 = \mathsf{True} \implies H_1 = \mathsf{False}$$

Null Hypothesis: H_0

- States the assumption to be tested
- Begin with assumption that $H_0 = \text{True}$
- Always evaluates (partial) equality $(=, \leq, \geq)$

- States the assumption believed to be True
- Evaluate if evidence supports assumption
- Always evaluates (strict) inequality (≠, >, <)

- Formally examine two opposing conjectures (hypothesis): H₀ and H₁
- Mutually exclusive and exhaustive: $H_0 = \text{True} \implies H_1 = \text{False}$
- Analyse data to determine which is True and which is False

Null Hypothesis: H_0

- States the assumption to be tested
- Begin with assumption that $H_0 = \text{True}$
- Always evaluates (partial) equality $(=, \leq, \geq)$

- States the assumption believed to be True
- Evaluate if evidence supports assumption
- Always evaluates (strict) inequality (≠, >, <)

- Formally examine two opposing conjectures (hypothesis): H₀ and H₁
- Mutually exclusive and exhaustive: $H_0 = \text{True} \implies H_1 = \text{False}$
- Analyse data to determine which is True and which is False

Null Hypothesis: H_0

- States the assumption to be tested
- Begin with assumption that $H_0 = \text{True}$
- Always evaluates (partial) equality (=, ≤, ≥)

- States the assumption believed to be True
- Evaluate if evidence supports assumption
- Always evaluates (strict) inequality (≠, >, <)

Test type

z-test: Gaussian distribution *t*-test: Student's *t* distribution

Test type

z-test: Gaussian distribution *t*-test: Student's *t* distribution

One or Two sided

One: $H_0: \mu^A - \mu^B \le 0$ $H_1: \mu^A - \mu^B > 0$ (directional) Two: $H_0: \mu^A - \mu^B = 0$ $H_1: \mu^A - \mu^B \ne 0$ (not directional)

Test type

z-test: Gaussian distribution *t*-test: Student's *t* distribution

One or Two sided

One: $H_0: \mu^A - \mu^B \le 0$ $H_1: \mu^A - \mu^B > 0$ (directional) Two: $H_0: \mu^A - \mu^B = 0$ $H_1: \mu^A - \mu^B \ne 0$ (not directional)

Test Statistic

One-Sample: compare sample to population with known characteristics

Two-Sample: compare two samples; typically experiment vs. control (e.g. vaccines)

Paired: one-sample test on difference between samples

Test type

z-test: Gaussian distribution t-test: Student's t distribution

One or Two sided

One:
$$H_0: \mu^A - \mu^B \le 0$$
 $H_1: \mu^A - \mu^B > 0$ (directional)
Two: $H_0: \mu^A - \mu^B = 0$ $H_1: \mu^A - \mu^B \ne 0$ (not directional)

Test Statistic

One-Sample: compare sample to population with known characteristics

Two-Sample: compare two samples; typically experiment vs. control (e.g. vaccines)

Paired: one-sample test on difference between samples

Generating Variation

Data Split	Α	В	
$\left\{\mathcal{D}_{train}^1, \mathcal{D}_{test}^1 \right\}$	ℓ_1^A	ℓ_1^B	
$\left\{\mathcal{D}_{train}^2, \mathcal{D}_{test}^2\right\}$	$\boldsymbol{\ell}_2^A$	ℓ_2^B	
÷	÷	÷	
$\left\{\mathcal{D}_{train}^{N}, \mathcal{D}_{test}^{N} ight\}$	ℓ_N^A	ℓ_N^{B}	

Generating Variation

Data Split	Α	В	d
$\left\{\mathcal{D}_{train}^1, \mathcal{D}_{test}^1 \right\}$	ℓ_1^A	ℓ_1^B	$\ell_1^B - \ell_1^A$
$\left\{\mathcal{D}^2_{\mathrm{train}}, \mathcal{D}^2_{\mathrm{test}}\right\}$	ℓ_2^A	ℓ_2^B	$\ell_2^B - \ell_2^A$
:	÷	:	:
$\left\{\mathcal{D}_{train}^{N},\mathcal{D}_{test}^{N}\right\}$	ℓ_N^A	ℓ_N^B	$\ell_N^B - \ell_N^A$

$$H_0: \mu^d = 0$$
 $\alpha = 5\%$ (significance) $H_1: \mu^d \neq 0$ $N = 20$

$$H_0: \mu^d = 0$$
 $\alpha = 5\%$ (significance) $H_1: \mu^d \neq 0$ $N = 20$

$$H_0: \mu^d = 0$$
 $\alpha = 5\%$ (significance)
$$H_1: \mu^d \neq 0$$
 $N = 20$

$$H_0: \mu^d = 0$$
 $\alpha = 5\%$ (significance) $H_1: \mu^d \neq 0$ $N = 20$

$$\bar{d} = \frac{1}{N} \sum_{i=1}^{N} d_i \qquad s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (d_i - \bar{d})^2 \qquad t = \frac{\bar{d} - 0}{s/\sqrt{N}}$$

$$= 2.53 \qquad = 27.78 \qquad = 2.14$$

$$H_0: \mu^d = 0$$
 $\alpha = 5\%$ (significance) $H_1: \mu^d \neq 0$ $N = 20$

$$\bar{d} = \frac{1}{N} \sum_{i=1}^{N} d_i$$
 $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (d_i - \bar{d})^2$ $t = \frac{\bar{d} - 0}{s/\sqrt{N}}$
= 2.53 = 27.78 = 2.14

• Rejecting H_0 does not imply 100% sure H_0 is False

- ullet Rejecting H_0 does not imply 100% sure H_0 is False
- Failing to reject H_0 does not imply H_0 is True

- ullet Rejecting H_0 does not imply 100% sure H_0 is False
- Failing to reject H_0 does not imply H_0 is True
- Confidence level ($\alpha = 0.05$) is from convention; not always best

- ullet Rejecting H_0 does not imply 100% sure H_0 is False
- Failing to reject H_0 does not imply H_0 is True
- Confidence level ($\alpha = 0.05$) is from convention; not always best
- Statistical significance does not imply practical relevance

- ullet Rejecting H_0 does not imply 100% sure H_0 is False
- Failing to reject H_0 does not imply H_0 is True
- Confidence level ($\alpha = 0.05$) is from convention; not always best
- Statistical significance does not imply practical relevance
 - \circ Rejecting $H_0: \mu^d=0$ only tells us that $\mu^d
 eq 0$ but not how big or important the difference is

- ullet Rejecting H_0 does not imply 100% sure H_0 is False
- Failing to reject H_0 does not imply H_0 is True
- Confidence level ($\alpha = 0.05$) is from convention; not always best
- Statistical significance does not imply practical relevance
 - Rejecting $H_0: \mu^d = 0$ only tells us that $\mu^d \neq 0$ but not how big or important the difference is
 - o Remedy: Report confidence interval (CI)

$$\bar{d} \pm c|_{\alpha/2} \cdot \frac{s}{\sqrt{N}}$$

which, for our example would be

$$2.53 \pm 2.093 \cdot \frac{5.27}{\sqrt{20}}$$

$$2.53 \pm 2.47$$

Cross Validation for Variation: Caveat

• Recall that CLT requires the samples to be independent

Cross Validation for Variation: Caveat

- Recall that CLT requires the samples to be independent
- Simple cross-validation can violate that independence (overlap in $\mathcal{D}_{\text{train}}$!)

Data Split	Α	В	d
$\left\{\mathcal{D}_{train}^1, \mathcal{D}_{test}^1\right\}$	$oldsymbol{\ell}_1^A$	ℓ_1^B	$\ell_1^B - \ell_1^A$
$\left\{\mathcal{D}^2_{\text{train}}, \mathcal{D}^2_{\text{test}}\right\}$	ℓ_2^A	ℓ_2^B	$\ell_2^B - \ell_2^A$
÷	÷	÷	÷

Cross Validation for Variation: Caveat

- Recall that CLT requires the samples to be independent
- ullet Simple cross-validation can violate that independence (overlap in $\mathcal{D}_{\mathrm{train}}$!)

Data Split	Α	В	d
$\left\{\mathcal{D}_{train}^1, \mathcal{D}_{test}^1\right\}$	ℓ_1^A	ℓ_1^B	$\ell_1^B - \ell_1^A$
$\left\{\mathcal{D}^2_{\text{train}}, \mathcal{D}^2_{\text{test}}\right\}$	ℓ_2^A	ℓ_2^B	$\ell_2^B - \ell_2^A$
:	÷	÷	÷

Solutions:

- o 5x2 Cross Validation [1]
- o Adjust standard deviation to account for imbalance [2]
- o ...and many more (ANOVA, Non-parametric tests, etc.)!

^{2.} C. Nadeau & Y. Bengio, Inference for the Generalization Error, 2003

Summary

Key

Being able to compare models and experiments is both a science and an art!

Most important aspect is to think what sources of variability affects results, and how large their effects are likely to be.

Summary

Key

Being able to compare models and experiments is both a science and an art!

Most important aspect is to think what sources of variability affects results, and how large their effects are likely to be.

- Some measures incorporate context; use it! (P-R, ROC)
- For when statistical tests are required (not always!)
 - o ensure your assumptions on the model / data are clearly stated
 - o ensure assumptions of the test are met
- Performance on error measures not all—speed, use of resources, and ease of implementation can, and should, affect preference!

