Applied Machine Learning (AML)

Model Selection

Oisin Mac Aodha • Siddharth N.

Comparing Evaluation Measures

email	true	pred (A)	pred (B)		Naive Bayes (A)	Logistic Regression (B)
"send us your password"	+	+	+	Acc	72.6%	84.5%
"send us review"	_	+	_	κ	54.1%	66.2%
"review your account"	_	_	+	F1-score	85.6%	89.1%
"review us"	+	_	_	ROC AUC	48.4%	55.7%
"send your password"	+	+	+	:	:	:
"send us your account"	+	+	_	•	•	·
:						

Clearly, logistic regression (B) has higher scores than naive Bayes (A)!

Should we choose B over A? maybe?

Direct Comparison

Comparing Point Estimates

\mathcal{D}	$= \{\mathcal{D}_{train}, \mathcal{D}_{test}\}$	$\mathcal{D}_{train} \cap \mathcal{D}_{test} = \emptyset$		
	Naive Bayes (A)		Logistic Regression (B)	
Acc	72.6%	<	84.5%	
κ	54.1%	<	66.2%	
F1-score	85.6%	<	89.1%	
ROC AUC	48.4%	<	55.7%	
÷	:		<u>:</u>	

Comparing Point Estimates

$\mathcal{D} = \{\mathcal{D}^{'}_{\mathsf{train}}, \mathcal{D}^{'}_{\mathsf{test}}\} \qquad \mathcal{D}^{'}_{\mathsf{train}} \cap \mathcal{D}^{'}_{\mathsf{test}} = \emptyset$

Naive Bayes (A)		Logistic Regression (B
79.3%	>	78.1%
61.9%	>	60.3%
86.1%	>	82.4%
50.1%	<	50.4%
:		:
	79.3% 61.9% 86.1% 50.1%	79.3% > 61.9% > 86.1% > 50.1% <

Point estimates can be susceptible to many kinds of random effects!

Comparison with Tradeoff

AUC of Precision-Recall

- Which model is better?
- Choice can depend on trade-off
- lower recall, higher precision (c_1) : A > B
- lower precision, higher recall (c_2) : B > A
- Random effects (e.g. data split) can make comparison hard

THE UNIVERSITY & EDINBURGH INFORMATICS

2

Embracing Uncertainty

Variation in error

• Dataset partitioning (e.g. cross validation)

$$\begin{split} \{\mathcal{D}_{\text{train}}^1, \mathcal{D}_{\text{test}}^1\}, \{\mathcal{D}_{\text{train}}^2, \mathcal{D}_{\text{test}}^2\}, \dots, \{\mathcal{D}_{\text{train}}^K, \mathcal{D}_{\text{test}}^K\} \\ & \land > \land B & \land > \land B & \dots & B > \land \end{split}$$

• Model (e.g. stochastic linear regression)

$$y_i = w_0 + w_1 x_i + \epsilon_i \quad \epsilon_i \sim \mathcal{N}(0, 1)$$

- Learning algorithm (e.g. SGD)
 - initialisation effects
- local minima

Comparing Distributions

- Compute the difference in *mean* error
 - what difference is enough to decide B> A?
 - o does the spread / variance affect this choice?
- Difficult to provide a general approach to say one model is "better" than another
- Weaker, but feasible, approach:

 How likely is it that the observed disp

How likely is it that the observed disparities are due to chance?

Statistical Tests

Preliminaries

Central Limit Theorem (CLT)

For a set of samples x_1, \ldots, x_N, \ldots from a population with expected mean μ and finite variance σ^2

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{N}} \sim \mathcal{N}(0, 1) \quad \text{as } N \to \infty$$

Assume

- population μ known
- population σ^2 known

Preliminaries

Population vs. Sample statistics

Population: All the elements from a set E.g. All leave-1-out splits of the dataset

Sample: Observations drawn from population

E.g. Some N splits of the dataset

If sample set is x_1, \ldots, x_N

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

*Bessel's correction

Preliminaries

Student's-t distribution

- CLT: (weak) convergence to $\mathcal{N}(0,1)$ as $N \to \infty$
- for smaller *N*, not Gaussian!

Assume

- population μ known
- population σ^2 unknown
- estimate sample variance $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \overline{x}_N)^2$

$$t = \frac{\overline{x} - \mu}{s/\sqrt{N}}, \quad v = N - 1$$

$$f(t, v) = \frac{\Gamma(\frac{v+1}{2})}{\sqrt{v\pi} \Gamma(\frac{v}{2})} \left(1 + \frac{t^2}{v}\right)^{-(v+1)/2}$$

informatics

Statistical Testing: A Sketch

- Examine the *mean* of a set of samples
 e.g. difference in classification errors
- Why? tendency towards Gaussian
- For some assumptions about the population: mean, variance (?)
 How likely is this observed sample mean value to have arisen by chance?

A common framework to evaluate chance occurrence.

Hypothesis Testing

- Formally examine two opposing conjectures (hypothesis): H_0 and H_1
- Mutually exclusive and exhaustive: $H_0 = \text{True} \implies H_1 = \text{False}$
- Analyse data to determine which is True and which is False

	Decision H_0	(Retain H_1
H_0	√	Type II
$\stackrel{L}{\vdash}_{H_1}$	Type I	✓

Null Hypothesis: H_0

- States the assumption to be tested
- Begin with assumption that $H_0 = \text{True}$
- Always evaluates (partial) equality $(=, \le, \ge)$

Alternative Hypothesis: H_1

- States the assumption believed to be True
- Evaluate if evidence supports assumption
- Always evaluates (strict) *in*equality (≠, >, <)

Statistical Tests

Hypothesis Testing

Hypothesis Testing: Variants

Test type

z-test: Gaussian distribution *t*-test: Student's *t* distribution

• One or Two sided

One: $H_0: \mu^A - \mu^B \le 0$ $H_1: \mu^A - \mu^B > 0$ (directional) Two: $H_0: \mu^A - \mu^B = 0$ $H_1: \mu^A - \mu^B \ne 0$ (not directional)

Test Statistic

One-Sample: compare sample to population with known characteristics

Two-Sample: compare two samples; typically experiment vs. control (e.g. vaccines)

Paired: one-sample test on difference between samples

Example: Hypothesis Testing for Models

Generating Variation

Data Split	Α	В	d
$\left\{\mathcal{D}_{train}^1, \mathcal{D}_{test}^1\right\}$	ℓ_1^A	ℓ_1^B	$\ell_1^B - \ell_1^A$
$\left\{\mathcal{D}^2_{train}, \mathcal{D}^2_{test}\right\}$	$\boldsymbol{\ell_2^A}$	ℓ_2^B	$\ell_2^B - \ell_2^A$
÷	÷	÷	:
$\left\{\mathcal{D}_{train}^{N}, \mathcal{D}_{test}^{N} ight\}$	ℓ_N^A	ℓ_N^B	$\ell_N^B - \ell_N^A$

informatics

Example: Hypothesis Testing for Models

Hypotheses

THE UNIVERSITY OF EDINBURGH INFORMATICS

10

11

Hypothesis Testing: Caveats

- Rejecting H_0 does not imply 100% sure H_0 is False
- Failing to reject H_0 does not imply H_0 is True
- Confidence level ($\alpha = 0.05$) is from convention; not always best
- Statistical significance does not imply practical *relevance*
 - Rejecting $H_0: \mu^d=0$ only tells us that $\mu^d\neq 0$ but not how big or important the difference is
 - o Remedy: Report confidence interval (CI)

$$\bar{d} \pm c|_{\alpha/2} \cdot \frac{s}{\sqrt{N}}$$

which, for our example would be

Cross Validation for Variation: Caveat

- Recall that CLT requires the samples to be independent
- ullet Simple cross-validation can violate that independence (overlap in $\mathcal{D}_{\text{train}}$!)

Data Split	Α	В	d
$\left\{\mathcal{D}^1_{train}, \mathcal{D}^1_{test}\right\}$	ℓ_1^A	ℓ_1^B	$\ell_1^B - \ell_1^A$
$\left\{\mathcal{D}^2_{\text{train}}, \mathcal{D}^2_{\text{test}}\right\}$	$\boldsymbol{\ell}_2^A$	ℓ_2^B	$\boldsymbol{\ell}_2^{B} - \boldsymbol{\ell}_2^{A}$
÷	:	:	:

- Solutions:
 - 5x2 Cross Validation [1]
 - o Adjust standard deviation to account for imbalance [2]
 - $\circ \;\; ... and \; many \; more \; (ANOVA, Non-parametric \; tests, \; etc.)!$

Summary

Key

Being able to compare models and experiments is both a science and an art!

Most important aspect is to think what sources of variability affects results, and how large their effects are likely to be.

- Some measures incorporate context; use it! (P-R, ROC)
- For when statistical tests are required (not always!)
 - o ensure your assumptions on the model / data are clearly stated
 - o ensure assumptions of the test are met
- Performance on error measures not all—speed, use of resources, and ease of implementation can, and should, affect preference!

