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Direct Comparison

Comparing EvaluationMeasures

email true pred (A) pred (B)

“send us your password” + + +
“send us review” − + −
“review your account” − − +
“review us” + − −
“send your password” + + +
“send us your account” + + −

...

Naive Bayes (A) Logistic Regression (B)

Acc 72.6% 84.5%
𝜅 54.1% 66.2%
F1‑score 85.6% 89.1%
ROC AUC 48.4% 55.7%

...
...

...

Clearly, logistic regression (B) has higher scores than naive Bayes (A)!

Should we choose B over A? maybe?
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Comparing Point Estimates

D = {Dtrain,Dtest} Dtrain ∩Dtest = ∅

Naive Bayes (A) Logistic Regression (B)

Acc 72.6% < 84.5%
𝜅 54.1% < 66.2%
F1‑score 85.6% < 89.1%
ROC AUC 48.4% < 55.7%

...
...

...
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Comparing Point Estimates

D = {D ′
train,D

′
test} D ′

train ∩D ′
test = ∅

Naive Bayes (A) Logistic Regression (B)

Acc 79.3% > 78.1%
𝜅 61.9% > 60.3%
F1‑score 86.1% > 82.4%
ROC AUC 50.1% < 50.4%

...
...

...

Point estimates can be susceptible to many kinds of random effects!
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Comparisonwith Tradeoff

A

B

c1

c2

Recall

Pr
ec
is
io
n

AUC of Precision-Recall
• Which model is better?

• Choice can depend on trade‑off
◦ lower recall, higher precision (c1): A > B
◦ lower precision, higher recall (c2): B > A

• Random effects (e.g. data split) can
make comparison hard
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Embracing Uncertainty

Variation in error
• Dataset partitioning (e.g. cross validation)

{D1
train,D

1
test}, {D2

train,D
2
test}, . . . , {DK

train,D
K
test}

A> B A> B … B> A

• Model (e.g. stochastic linear regression)

yi = w0 + w1xi + 𝜖i 𝜖i ∼ N(0, 1)

• Learning algorithm (e.g. SGD)

◦ initialisation effects
◦ local minima

 

 

 

 

 

 

4

A B
0

20

40

60

80

100

Model

Er
ro
r(
%
)

Comparing Distributions

• Compute the difference inmean error

◦ what difference is enough to decide B> A?
◦ does the spread / variance affect this choice?

• Difficult to provide a general approach to say one
model is “better” than another

• Weaker, but feasible, approach:

How likely is it that the observed disparities are
due to chance?
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Statistical Tests

Preliminaries

Population vs. Sample statistics

Population: All the elements from a set

E.g. All leave‑1‑out splits of the dataset

Sample: Observations drawn from population

E.g. Some N splits of the dataset

If sample set is x1, . . . , xN

x =
1
N

N∑
i=1

xi

s2 =
1

N − 1

N∑
i=1

(xi − x)2

∗Bessel’s correction
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Preliminaries

Central Limit Theorem (CLT)
For a set of samples x1, . . . , xN, . . . from a population
with expectedmean 𝜇 and finite variance 𝜎2

z = x̄ − 𝜇

𝜎/
√

N
∼ N(0, 1) asN → ∞

Assume
• population 𝜇 known

• population 𝜎2 known

x

p

{•, •, . . . , •} mean−→x

{•, •, . . . , •} mean−→x

{•, •, . . . , •} mean−→x

...

x
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Preliminaries

Student’s-t distribution
• CLT: (weak) convergence toN(0, 1) as N → ∞
• for smaller N, not Gaussian!

Assume
• population 𝜇 known

• population 𝜎2 unknown

• estimate sample variance s2 = 1
N−1

∑N
i=1(xi − xN)2

t = x − 𝜇

s/
√

N
, 𝜈 = N − 1

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5
Student’s t (0, 𝜈)

N (0, 1)

f(t, 𝜈) =
Γ( 𝜈+1

2 )
√
𝜈𝜋 Γ( 𝜈2 )

(
1 + t2

𝜈

)−(𝜈+1)/2
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Statistical Testing: A Sketch

• Examine themean of a set of samples

e.g. difference in classification errors

• Why? — tendency towards Gaussian

• For some assumptions about the
population: mean, variance (?)

How likely is this observed sample mean
value to have arisen by chance?

A common framework to evaluate
chance occurrence.

x − 3𝜎 x − 2𝜎 x − 1𝜎 x x + 1𝜎 x + 2𝜎 x + 3𝜎

Gaussian

x − 3s x − 2s x − 1s x x + 1s x + 2s x + 3s

Student’s‑t (𝜈 = 9)
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Statistical Tests

Hypothesis Testing

Hypothesis Testing

• Formally examine two opposing
conjectures (hypothesis): H0 and H1

• Mutually exclusive and exhaustive:
H0 = True =⇒ H1 = False

• Analyse data to determine which is
True and which is False

Ø Type II

Type I Ø

H0

H0

H1

H1

Tr
ue

Decision (Retain)

Null Hypothesis: H0
• States the assumption to be tested

• Begin with assumption that H0 = True
• Always evaluates (partial) equality (=, ≤, ≥)

Alternative Hypothesis: H1
• States the assumption believed to be True
• Evaluate if evidence supports assumption

• Always evaluates (strict) inequality (≠, >, <)
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Hypothesis Testing: Variants
• Test type

z‑test: Gaussian distribution
t‑test: Student’s t distribution

• One or Two sided
One: H0 : 𝜇A − 𝜇B ≤ 0 H1 : 𝜇A − 𝜇B > 0 (directional)
Two: H0 : 𝜇A − 𝜇B = 0 H1 : 𝜇A − 𝜇B ≠ 0 (not directional)

• Test Statistic
One‑Sample: compare sample to population with known characteristics
Two‑Sample: compare two samples; typically experiment vs. control (e.g. vaccines)
Paired: one‑sample test on difference between samples
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Example: Hypothesis Testing forModels

Generating Variation
Data Split A B d{
D1

train,D
1
test

}
ℓA
1 ℓB

1 ℓB
1 − ℓA

1{
D2

train,D
2
test

}
ℓA
2 ℓB

2 ℓB
2 − ℓA

2

...
...

...
...{

DN
train,D

N
test

}
ℓA
N ℓB

N ℓB
N − ℓA

N
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Example: Hypothesis Testing forModels

B−A
−5

0

5

10

15

Er
ro
rd

iff
er
en

ce
(d
)

−0.61
6.44

−4.83
7.43

−3.04
−4.75

6.47
9.62
9.70
2.51

−3.18
8.23

10.24
−4.59

6.41
2.08

−2.49
2.72

−0.24
2.56

d

Hypotheses
H0 : 𝜇d = 0
H1 : 𝜇d ≠ 0

𝛼 = 5% (significance)

N = 20

d̄ =
1
N

N∑
i=1

di s2 =
1

N − 1

N∑
i=1

(di −d̄)2 t = d̄ − 0
s/
√

N
= 2.53 = 27.78 = 2.14

−2.09 0 +2.09

Student’s‑t (𝜈 = 19) c = 2.093(𝛼 = 5%)

 

 

|t | > c
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Hypothesis Testing: Caveats
• Rejecting H0 does not imply 100% sure H0 is False
• Failing to reject H0 does not imply H0 is True
• Confidence level (𝛼 = 0.05) is from convention; not always best

• Statistical significance does not imply practical relevance
◦ RejectingH0 : 𝜇d = 0 only tells us that 𝜇d ≠ 0 but not how big or important the difference is
◦ Remedy: Report confidence interval (CI)

d̄ ± c|𝛼/2 · s
√

N
which, for our example would be

2.53 ± 2.093 · 5.27
√

20
(𝛼 = 0.05, c|0.05 = 2.093)

2.53 ± 2.47
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Cross Validation for Variation: Caveat
• Recall that CLT requires the samples to be independent
• Simple cross‑validation can violate that independence (overlap inDtrain!)

Data Split A B d{
D1

train,D
1
test

}
ℓA
1 ℓB

1 ℓB
1 − ℓA

1{
D2

train,D
2
test

}
ℓA
2 ℓB

2 ℓB
2 − ℓA

2
...

...
...

...
• Solutions:

◦ 5x2 Cross Validation [1]
◦ Adjust standard deviation to account for imbalance [2]
◦ …andmanymore (ANOVA, Non‑parametric tests, etc.)!

1. T. G. Dietterich, Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms, 1998
2. C. Nadeau & Y. Bengio, Inference for the Generalization Error, 2003

 

 

 

 

12



Summary
Key
Being able to compare models and experiments is both a science and an art!

Most important aspect is to think what sources of variability affects results, and how
large their effects are likely to be.

• Somemeasures incorporate context; use it! (P‑R, ROC)

• For when statistical tests are required (not always!)
◦ ensure your assumptions on the model / data are clearly stated
◦ ensure assumptions of the test are met

• Performance on error measures not all—speed, use of resources, and ease of
implementation can, and should, affect preference!
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