

Applied Machine Learning (AML)

Evaluation

Oisin Mac Aodha • Siddharth N.

Outline

Evaluation Measures

- How (in)accurate is a model?
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning

Outline

Evaluation Measures

- How (in)accurate is a model?
- Supervised Learning
 - o Classification
 - Regression
- Unsupervised Learning

Evaluation

Classification

email	true
"send us your password"	+
"send us review"	_
"review your account"	_
"review us"	+
"send your password"	+
"send us your account"	+
:	

email	true	pred
"send us your password"	+	+
"send us review"	_	+
"review your account"	_	_
"review us"	+	_
"send your password"	+	+
"send us your account"	+	+
:		

email	true	pred
"send us your password"	+	+
"send us review"	_	+
"review your account"	_	_
"review us"	+	_
"send your password"	+	+
"send us your account"	+	+
:		

email	true	pred
"send us your password"	+	+
"send us review"	_	+
"review your account"	_	_
"review us"	+	_
"send your password"	+	+
"send us your account"	+	+
<u>:</u>		

Naive Bayes: Spam

email	true	pred
"send us your password"	+	+
"send us review"	_	+
"review your account"	_	_
"review us"	+	_
"send your password"	+	+
"send us your account"	+	+
:		

Predicted + - TP FN 300 300 400

email	true	pred
"send us your password"	+	+
"send us review"	_	+
"review your account"	_	_
"review us"	+	_
"send your password"	+	+
"send us your account"	+	+
:		

email	true	pred
"send us your password"	+	+
"send us review"	_	+
"review your account"	_	_
"review us"	+	_
"send your password"	+	+
"send us your account"	+	+
÷		

• Error =
$$\frac{\text{incorrect}}{\text{total}} = \frac{\text{FP} + \text{FN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

• Error =
$$\frac{\text{incorrect}}{\text{total}} = \frac{\text{FP} + \text{FN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

• Accuracy =
$$\frac{\text{correct}}{\text{total}} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

• Error =
$$\frac{\text{incorrect}}{\text{total}} = \frac{\text{FP} + \text{FN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

• Accuracy =
$$\frac{\text{correct}}{\text{total}} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

• Error =
$$\frac{\text{incorrect}}{\text{total}} = \frac{\text{FP} + \text{FN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

• Accuracy =
$$\frac{\text{correct}}{\text{total}} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

Predicted +
TP FN 200 300

FP TN 100 400

Measure of how "good" a classifier is

• Error =
$$\frac{\text{incorrect}}{\text{total}} = \frac{\text{FP} + \text{FN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

• Accuracy =
$$\frac{\text{correct}}{\text{total}} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

Predicted +
TP FN 200 300

FP TN 100 400

Measure of how "good" a classifier is

Issue: Class imbalances

Acc(B) > Acc(A)!

Acc(B) > Acc(A)!

Examples

- Earthquakes: rare event
 - \rightarrow very good accuracy if always '–'!

Acc(B) > Acc(A)!

Examples

- Earthquakes: rare event
 → very good accuracy if always '-'!
- Web search: mostly irrelevant
 → very good accuracy if always "irrelevant"!

Acc(B) > Acc(A)!

Examples

- Earthquakes: rare event
 → very good accuracy if always '–'!
- Web search: mostly irrelevant
 → very good accuracy if always "irrelevant"!
- Cost of errors (FN, FP) are not the same

- $\bullet \ \ \, \text{False Positive Rate (FPR)} = \frac{FP}{FP + TN}$
 - o (False Alarm) % of '-' misclassified as '+'

- False Positive Rate (FPR) = $\frac{FP}{FP + TN}$
 - o (False Alarm) % of '-' misclassified as '+'
- False Negative Rate (FNR) = $\frac{FN}{TP + FN}$
 - $\circ~$ (Miss) % of '+' misclassified as '–'

- False Positive Rate (FPR) = $\frac{FP}{FP + TN}$
 - o (False Alarm) % of '-' misclassified as '+'
- False Negative Rate (FNR) = $\frac{FN}{TP + FN}$
 - (Miss) % of '+' misclassified as '-'
- Recall / True Positive Rate (TPR) = $\frac{TP}{TP + FN}$
 - (1 Miss) % of '+' correctly predicted

- False Positive Rate (FPR) = $\frac{FP}{FP + TN}$
 - o (False Alarm) % of '-' misclassified as '+'
- False Negative Rate (FNR) = $\frac{FN}{TP + FN}$
 - o (Miss) % of '+' misclassified as '-'
- Recall / True Positive Rate (TPR) = $\frac{TP}{TP + FN}$
 - (1 Miss) % of '+' correctly predicted
- Precision / Positive Predictive Rate (PPR) = $\frac{TP}{TP + FP}$
 - % of '+' out of all positive predictions

- False Positive Rate (FPR) = $\frac{FP}{FP + TN}$
 - (False Alarm) % of '-' misclassified as '+'
- False Negative Rate (FNR) = $\frac{FN}{TP + FN}$
 - o (Miss) % of '+' misclassified as '-'
- Recall / True Positive Rate (TPR) = $\frac{TP}{TP + FN}$
 - o (1 Miss) % of '+' correctly predicted
- Precision / Positive Predictive Rate (PPR) = $\frac{TP}{TP + FP}$
 - o % of '+' out of all positive predictions

Report pairs: Precision—Recall; TPR—FPR (ROC)

Unified Measures:

Unified Measures:

optimisation objective, comparative evaluation

• Detection cost $cost = C_{FP} \cdot FP + C_{FN} \cdot FN$

Unified Measures:

- Detection cost $cost = C_{FP} \cdot FP + C_{FN} \cdot FN$
 - F-measure harmonic mean of precision (Pr) & recall (Re): $F1 = \frac{2 \cdot \text{Pr} \cdot \text{Re}}{\text{Pr} + \text{Re}}$

Unified Measures:

- Detection cost $cost = C_{FP} \cdot FP + C_{FN} \cdot FN$
 - F-measure harmonic mean of precision (Pr) & recall (Re): $F1 = \frac{2 \cdot Pr \cdot Re}{Pr + Re}$
- Cohen's Kappa $\kappa = \frac{p_o p_e}{1 p_e}$

Unified Measures:

- Detection cost $cost = C_{FP} \cdot FP + C_{FN} \cdot FN$
 - F-measure harmonic mean of precision (Pr) & recall (Re): $F1 = \frac{2 \cdot Pr \cdot Re}{Pr + Re}$
- Cohen's Kappa $\kappa = \frac{p_o p_e}{1 p_e}$
 - \circ p_o = label agreement b/w model predictions and targets (accuracy)

Unified Measures:

optimisation objective, comparative evaluation

• Detection cost $cost = C_{FP} \cdot FP + C_{FN} \cdot FN$

- F-measure harmonic mean of precision (Pr) & recall (Re): $F1 = \frac{2 \cdot Pr \cdot Re}{Pr + Re}$
- Cohen's Kappa $\kappa = \frac{p_o p_e}{1 p_e}$
 - $\circ p_o =$ label agreement b/w model predictions and targets (accuracy)
 - \circ p_e = chance agreement b/w model predictions and targets

Unified Measures:

optimisation objective, comparative evaluation

• Detection cost $cost = C_{FP} \cdot FP + C_{FN} \cdot FN$

- F-measure harmonic mean of precision (Pr) & recall (Re): $F1 = \frac{2 \cdot \Pr{\cdot Re}}{\Pr{+ Re}}$
- Cohen's Kappa $\kappa = \frac{p_o p_e}{1 p_e}$
 - $\circ p_o$ = label agreement b/w model predictions and targets (accuracy)
 - o p_e = chance agreement b/w model predictions and targets denoting total T=TP+FP+TN+FN

Error Measures

Unified Measures:

optimisation objective, comparative evaluation

- Detection cost $cost = C_{FP} \cdot FP + C_{FN} \cdot FN$
 - F-measure harmonic mean of precision (Pr) & recall (Re): $F1 = \frac{2 \cdot Pr \cdot Re}{Pr + Re}$

Predicted

300

400

200

100

- Cohen's Kappa $\kappa = \frac{p_o p_e}{1 p_e}$
 - \circ p_o = label agreement b/w model predictions and targets (accuracy)
 - o p_e = chance agreement b/w model predictions and targets denoting total T = TP + FP + TN + FN $= \frac{\text{TP+FP}}{\text{TP+FN}} \cdot \frac{\text{TP+FN}}{\text{TP}} + \frac{\text{TN+FN}}{\text{TP}} \cdot \frac{\text{TN+FP}}{\text{TP}}$

• Models typically compute "confidence" as p(y|x)

- Models typically compute "confidence" as p(y|x)
- Decisions are made by thresholding this confidence

$$p(y|x) > \tau \implies \text{spam}$$

- $\quad \circ \quad \text{Logistic regression: } \sigma(\textbf{\textit{w}}^{\intercal}\textbf{\textit{x}}) \geq 0.5$
- Naive Bayes: p(y = spam|x) > 0.5

- Models typically compute "confidence" as p(y|x)
- Decisions are made by thresholding this confidence $p(y|x) > \tau \implies \text{spam}$
 - Logistic regression: $\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}) \geq 0.5$
 - Naive Bayes: p(y = spam|x) > 0.5
- τ determines error rates and confusion matrix each τ provides a value for chosen measure(s)

- Models typically compute "confidence" as p(y|x)
- Decisions are made by thresholding this confidence $p(y|x) > \tau \implies \text{spam}$
 - \circ Logistic regression: $\sigma(\mathbf{w}^{\top}\mathbf{x}) \geq 0.5$
 - Naive Bayes: p(y = spam|x) > 0.5
- τ determines error rates and confusion matrix each τ provides a value for chosen measure(s)
- Complete picture: plot measures as τ varies from $-\infty$ to ∞

$$\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \quad \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

email	label	$p(y \boldsymbol{x})$
"send us your password"	+	0.92
"send us review"	-	0.80
"review your account"	-	0.72
"review us"	+	0.65
"send your password"	+	0.61
"send us your account"	+	0.43
:		

$$\label{eq:Precision} \text{Precision} = \frac{TP}{TP + FP} \qquad \text{Recall} = \frac{TP}{TP + FN}$$

email	label	$p(y \mathbf{x})$
"send us your password"	+	0.92
"send us review"	_	0.80
"review your account"	_	0.72
"review us"	+	0.65
"send your password"	+	0.61
"send us your account"	+	0.43
:		

0.2

0.4

Recall

0.6

0.8

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

email	label	$p(y \mathbf{x})$
"send us your password"	+	0.92
"send us review"	-	0.80
"review your account"	_	0.72
"review us"	+	0.65
"send your password"	+	0.61
"send us your account"	+	0.43
<u>:</u>		

Area under curve (AUC) provides a more complete measure.

• Both classifiers get Pr = 66.7% and Re = 40%

- Both classifiers get Pr = 66.7% and Re = 40%
 - Same positive recognition rate (66.7%)

		Predicted			
2	+	TP 200	5N 300		
	_	FP 100	TN 0		

- Both classifiers get Pr = 66.7% and Re = 40%
 - Same positive recognition rate (66.7%)
 - Very different negative recognition rates: strong on left, nil on right

Receiver Operating Characteristic (ROC)

True Postive Rate (TPR) / Recall = $\frac{TP}{TP + FN}$ False Positive Rate (FPR) = $\frac{FP}{FP + TN}$

Receiver Operating Characteristic (ROC)

True Postive Rate (TPR) / Recall =
$$\frac{TP}{TP + FN}$$

False Positive Rate (FPR) = $\frac{FP}{FP + TN}$

AUC

- area under ROC curve
- larger area ⇒ better model

Receiver Operating Characteristic (ROC)

True Postive Rate (TPR) / Recall =
$$\frac{TP}{TP + FN}$$

False Positive Rate (FPR) =
$$\frac{FP}{FP + TN}$$

AUC

- area under ROC curve
- larger area ⇒ better model

Multi-Class Classification

Measures

- Cohen's Kappa $\kappa = \frac{p_o p_e}{1 p_e}$
- Matthews Correlation Coefficient (MCC)

$$MCC = \frac{p_0 - p_e}{\sqrt{(1 - p_y)(1 - p_{\hat{y}})}}$$

$$p_{e} = \sum_{k=1}^{K} \left(\frac{1}{T} \sum_{j=1}^{K} C_{k,j} \right) \left(\frac{1}{T} \sum_{i=1}^{K} C_{i,k} \right) \quad T = \sum_{i,j} C_{i,j}$$

$$p_y = \sum_{k=1}^K \left(\frac{1}{T} \sum_{j=1}^K C_{k,j}\right)^2 \quad p_{\hat{y}} = \sum_{k=1}^K \left(\frac{1}{T} \sum_{i=1}^K C_{i,k}\right)^2$$

	1	2	Predicted 2 3 4 5 6 7				8	
1 2 3 4 5 6 7 8	0.67	0.21	0.02	0.10	0.00	0.00	0.00	0.00
	0.03	0.95	0.00	0.02	0.00	0.00	0.00	0.00
	0.03	0.04	0.74	0.05	0.00	0.08	0.01	0.05
	0.02	0.20	0.03	0.73	0.00	0.01	0.01	0.01
	0.00	0.03	0.06	0.01	0.65	0.04	0.13	0.08
	0.03	0.09	0.05	0.13	0.02	0.67	0.00	0.02
	0.03	0.05	0.02	0.08	0.00	0.03	0.77	0.03
	0.05	0.04	0.05	0.06	0.00	0.04	0.05	0.70

Evaluation

Regression

Classification

count how often incorrect

Classification

count how often incorrect

Regression

• always wrong (!) ...but by how much?

Classification

count how often incorrect

Regression

- always wrong (!) ...but by how much?
- distance between predicted and actual values

Classification

count how often incorrect

Regression

- always wrong (!) ...but by how much?
- distance between predicted and actual values

Classification

count how often incorrect

Regression

- always wrong (!) ...but by how much?
- distance between predicted and actual values

 $\operatorname{dist}(\mathbf{y}, \mathbf{\hat{y}})$

 $\operatorname{dist}(\textbf{\textit{y}}, \boldsymbol{\hat{y}})$

 $\operatorname{dist}(\mathbf{y}, \hat{\mathbf{y}})$

Error Measures

Mean Square Error (MSE)

$$dist(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

 $\operatorname{dist}(\mathbf{y}, \hat{\mathbf{y}})$

Error Measures

- Mean Square Error (MSE)
- Mean Absolute Error (MAE)

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

 $\mathrm{dist}(\textbf{\textit{y}}, \boldsymbol{\hat{y}})$

Error Measures

- Mean Square Error (MSE)
- Mean Absolute Error (MAE)
- Correlation Coefficient (ρ)

$$\operatorname{dist}(\boldsymbol{y}, \boldsymbol{\hat{y}}) = \frac{\operatorname{Cov}(\boldsymbol{y}, \boldsymbol{\hat{y}})}{\sqrt{\operatorname{Var}(\boldsymbol{y})}\sqrt{\operatorname{Var}(\boldsymbol{\hat{y}})}}$$

 $\mathrm{dist}(\textbf{\textit{y}},\boldsymbol{\hat{y}})$

Error Measures

- Mean Square Error (MSE)
- Mean Absolute Error (MAE)
- Correlation Coefficient (ρ)
- Coefficient of Determination (R^2)

 $\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = 1 - \frac{\operatorname{MSE}(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\operatorname{Var}(\boldsymbol{y})}$

$$dist(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$dist(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Sensitivity to outliers
 - \circ squaring \rightarrow blow up error

$$dist(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Sensitivity to outliers
 - \circ squaring \rightarrow blow up error

$$dist(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Sensitivity to outliers
 - \circ squaring \rightarrow blow up error

$$dist(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Sensitivity to outliers
 - \circ squaring \rightarrow blow up error

$$dist(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Sensitivity to outliers
 - o squaring → blow up error
- Sensitivity to scaling / translation

$$dist(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Sensitivity to outliers
 squaring → blow up error
- Sensitivity to scaling / translation
- Baseline: predict mean y

Mean Absolute Error

$$\operatorname{dist}(\boldsymbol{y}, \boldsymbol{\hat{y}}) = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

$$dist(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

- Less sensitive to outliers
 - no squaring

$$dist(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

- Less sensitive to outliers
 - o no squaring
- Baseline: median, not mean

$$dist(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

- Less sensitive to outliers
 - no squaring
- Baseline: median, not mean

- Median Absolute Error: = $Median\{|y_i \hat{y}_i|\}_{i=1}^N$
 - robust, not sensitive to outliers
 - hard to optimise with gradients

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Characteristics

- Less sensitive to outliers
 - no squaring
- Baseline: median, not mean

Variants

- Median Absolute Error: = $Median\{|y_i \hat{y}_i|\}_{i=1}^N$
 - robust, not sensitive to outliers
 - hard to optimise with gradients
- Median Squared Error: = $Median\{(y_i \hat{y}_i)^2\}_{i=1}^N$

$$\operatorname{dist}(\boldsymbol{y}, \boldsymbol{\hat{y}}) = \rho(\boldsymbol{y}, \boldsymbol{\hat{y}}) = \frac{\operatorname{Cov}(\boldsymbol{y}, \boldsymbol{\hat{y}})}{\sqrt{\operatorname{Var}(\boldsymbol{y})}\sqrt{\operatorname{Var}(\boldsymbol{\hat{y}})}} \qquad \in [-1, 1]$$

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \rho(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{\operatorname{Cov}(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\sqrt{\operatorname{Var}(\boldsymbol{y})}\sqrt{\operatorname{Var}(\hat{\boldsymbol{y}})}} \qquad \in [-1, 1]$$

Characteristics

Insensitive to scaling and translation

$$\operatorname{dist}(\boldsymbol{y}, \boldsymbol{\hat{y}}) = \rho(\boldsymbol{y}, \boldsymbol{\hat{y}}) = \frac{\operatorname{Cov}(\boldsymbol{y}, \boldsymbol{\hat{y}})}{\sqrt{\operatorname{Var}(\boldsymbol{y})}\sqrt{\operatorname{Var}(\boldsymbol{\hat{y}})}} \in [-1, 1]$$

Characteristics

- Insensitive to scaling and translation
- No units

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \rho(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{\operatorname{Cov}(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\sqrt{\operatorname{Var}(\boldsymbol{y})}\sqrt{\operatorname{Var}(\hat{\boldsymbol{y}})}} \in [-1, 1]$$

Characteristics

- Insensitive to scaling and translation
- No units
- Signals agreement on relative ordering

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \rho(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{\operatorname{Cov}(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\sqrt{\operatorname{Var}(\boldsymbol{y})}\sqrt{\operatorname{Var}(\hat{\boldsymbol{y}})}} \in [-1, 1]$$

Characteristics

- Insensitive to scaling and translation
- No units
- Signals agreement on relative ordering
 - o for larger y, predict larger \hat{y}

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \rho(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{\operatorname{Cov}(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\sqrt{\operatorname{Var}(\boldsymbol{y})}\sqrt{\operatorname{Var}(\hat{\boldsymbol{y}})}} \in [-1, 1]$$

Characteristics

- Insensitive to scaling and translation
- No units
- Signals agreement on relative ordering
 - \circ for larger y, predict larger \hat{y}
 - o for smaller y, predict smaller \hat{y}

Showing correlation of \boldsymbol{y} with respect to $\hat{\boldsymbol{y}}$ for three different datasets

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \rho(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{\operatorname{Cov}(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\sqrt{\operatorname{Var}(\boldsymbol{y})}\sqrt{\operatorname{Var}(\hat{\boldsymbol{y}})}} \in [-1, 1]$$

Characteristics

- Insensitive to scaling and translation
- No units
- Signals agreement on relative ordering
 - o for larger y, predict larger \hat{y}
 - o for smaller y, predict smaller \hat{y}
 - ...or vice versa

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \rho(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{\operatorname{Cov}(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\sqrt{\operatorname{Var}(\boldsymbol{y})}\sqrt{\operatorname{Var}(\hat{\boldsymbol{y}})}} \in [-1, 1]$$

- Insensitive to scaling and translation
- No units
- Signals agreement on relative ordering
 - o for larger y, predict larger \hat{y}
 - o for smaller y, predict smaller \hat{y}
 - ...or vice versa
- Critical to visualise pitfalls: Anscombe's Quartet

$$\operatorname{dist}(\boldsymbol{y}, \boldsymbol{\hat{y}}) = 1 - \frac{\operatorname{MSE}(\boldsymbol{y}, \boldsymbol{\hat{y}})}{\operatorname{Var}(\boldsymbol{y})} \qquad \in [-\infty, 1]$$

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = 1 - \frac{\operatorname{MSE}(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\operatorname{Var}(\boldsymbol{y})} \in [-\infty, 1]$$

Characteristics

ullet R^2 measures goodness of fit for model

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = 1 - \frac{\operatorname{MSE}(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\operatorname{Var}(\boldsymbol{y})} \in [-\infty, 1]$$

- R² measures goodness of fit for model
- How much variance in y is explained by the model?

$$dist(\mathbf{y}, \hat{\mathbf{y}}) = 1 - \frac{MSE(\mathbf{y}, \hat{\mathbf{y}})}{Var(\mathbf{y})}$$

$$\in [-\infty, 1]$$

- ullet R^2 measures goodness of fit for model
- How much variance in y is explained by the model?
- Baseline: predict the mean label!

$$R^2=1$$
 (perfect fit) $R^2=0$ (baseline predictor) $R^2<0$ (incorrect model)

$$\operatorname{dist}(\boldsymbol{y}, \boldsymbol{\hat{y}}) = 1 - \frac{\operatorname{MSE}(\boldsymbol{y}, \boldsymbol{\hat{y}})}{\operatorname{Var}(\boldsymbol{y})}$$

$$\in [-\infty, 1]$$

- R^2 measures goodness of fit for model
- How much variance in y is explained by the model?
- Baseline: predict the mean label!

$$Var(y) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mu_y)^2$$

$$R^2=1$$
 (perfect fit)
 $R^2=0$ (baseline predictor)
 $R^2<0$ (incorrect model)

$$\operatorname{dist}(\boldsymbol{y}, \boldsymbol{\hat{y}}) = 1 - \frac{\operatorname{MSE}(\boldsymbol{y}, \boldsymbol{\hat{y}})}{\operatorname{Var}(\boldsymbol{y})}$$

$$\in [-\infty, 1]$$

- R^2 measures goodness of fit for model
- How much variance in y is explained by the model?
- Baseline: predict the mean label!

$$Var(y) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mu_y)^2 \mu_y = \frac{1}{N} \sum_{i=1}^{N} y_i$$

$$R^2 = 1$$
 (perfect fit)
 $R^2 = 0$ (baseline predictor)
 $R^2 < 0$ (incorrect model)

$$\operatorname{dist}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = 1 - \frac{\operatorname{MSE}(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\operatorname{Var}(\boldsymbol{y})}$$

$$\in [-\infty, 1]$$

Characteristics

- R² measures goodness of fit for model
- How much variance in y is explained by the model?
- Baseline: predict the mean label!

$$\operatorname{Var}(\boldsymbol{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mu_y)^2$$
$$\mu_y = \frac{1}{N} \sum_{i=1}^{N} y_i$$

• Under some conditions $ho^2=R^2$! (convex optimality with scaling and translation)

$$R^2=1$$
 (perfect fit) $R^2=0$ (baseline predictor) $R^2<0$ (incorrect model)

Summary

Evaluation

- Classification
 - Accuracy, TPR, FPR, Cohen's Kappa
 - o Precision-Recall, ROC curves

Summary

Evaluation

- Classification
 - o Accuracy, TPR, FPR, Cohen's Kappa
 - o Precision-Recall, ROC curves
- Regression
 - MSE, MAE
 - \circ Correlation, R^2