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Outline

® What is Generalisation?
® How do we characterise/measure it?

® What can we do to improve it?
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Machine Learning
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Generalisation

Machine Learning
® observe data

® |earn to model observed data (training data)

° to unseen, novel data (test data)
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Reasoning about Generalisation

Overfitting Underfitting
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Reasoning about Generalisation

Overfitting Underfitting
@ Fit training data well; unseen data poorly ® Fitsboth training and unseen data poorly
® Reason: accidental regularities ® Reason: insufficient regularities

® Reason: memorisation

® Model has very large ® Model has insufficient

~ # model parameters
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Overfitting vs. Underfitting: Example

Figures: C. Bishop - PRML

@ informatics
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Overfitting vs. Underfitting: Example

Figures: C. Bishop - PRML
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Overfitting vs. Underfitting: Example

model just right

Figures: C. Bishop - PRML
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Reasoning about Generalisation: Qualitative

Training Data
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Reasoning about Generalisation: Qualitative

Training Data

® More = better generalisation

o close training example likely test

error

error

# training examples
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Training Data

® More = better generalisation
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Reasoning about Generalisation: Qualitative

Training Data

® More = better generalisation
o close training example likely test
o fewer accidental regularities ielr

error

® less = lower training error
train
error

# training examples
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Reasoning about Generalisation: Qualitative

Training Data

® More = better generalisation
o close training example likely test
o fewer accidental regularities ielr

error

® less = lower training error

O easier to memorise train
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Reasoning about Generalisation: Qualitative

Training Data

® More = better generalisation
o close training example likely test
o fewer accidental regularities ielr

error

® less = lower training error
O easier to memorise
o fewer regularities to capture

train
error

# training examples
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Reasoning about Generalisation: Qualitative

Model Parameters
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Reasoning about Generalisation: Qualitative

Model Parameters

® More = better training error
o better flexibility

error

train
error

# model parameters
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Reasoning about Generalisation: Qualitative

Model Parameters

® More = better training error
o better flexibility
o easier to fit true and accidental
regularities
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Reasoning about Generalisation: Qualitative

Model Parameters

® More = better training error
o better flexibility
o easier to fit true and accidental
regularities

error

® Much more = poor generalisation

# model parameters
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o easier to fit true and accidental
regularities

error

® Much more = poor generalisation
O easier to memorise

# model parameters

::“\‘ "»,y THE UNIVERSITY of EDINBURGH
@ informatics



Reasoning about Generalisation: Qualitative

Model Parameters

® More = better training error
o better flexibility
o easier to fit true and accidental
regularities

error

® Much more = poor generalisation
O easier to memorise

® Much less = poor generalisation

# model parameters

::“\‘ "»,y THE UNIVERSITY f EDINBURGH
@ informatics



Reasoning about Generalisation: Qualitative

Model Parameters

® More = better training error
o better flexibility
o easier to fit true and accidental
regularities

error

® Much more = poor generalisation
O easier to memorise

® Much less = poor generalisation
o struggle to capture regularities

# model parameters
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Reasoning about Generalisation: Qualitative

Model Parameters

® More = better training error
o better flexibility
o easier to fit true and accidental
regularities

® Much more = poor generalisation
O easier to memorise

® Much less = poor generalisation
o struggle to capture regularities

error

# model parameters

Goldilocks Zone: Sufficient capacity to learn true regularities,

but not enough to memorise or exploit accidental regularities.



Tuning Model Capacity

Data requirements

e Different data requires different capacity

Figures: Stable Diffusion (Huggingface)
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Tuning Model Capacity

Data requirements

e Different data requires different capacity

® Need “controls” to control capacity

® “controls” = model hyper-parameters

o Regression: polynomial order
o Naive Bayes: # attributes, bounds on ¢
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Tuning Model Capacity

Data requirements

e Different data requires different capacity

® Need “controls” to control capacity

® “controls” = model hyper-parameters

o Regression: polynomial order
o Naive Bayes: # attributes, bounds on ¢
o Decision Trees: # nodes

Tune to minimise

Figures: Stable Diffusion (Huggingface)
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Generalisation

Measuring Generalisation



Beyond Fitting Training Data

Optimising an error function defined as the average loss over training set:

N
1 A A
~ > L(3; v:) where §, = f(z; w)

N =1
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Beyond Fitting Training Data

Optimising an error function defined as the average loss over training set:
1 &
5 2 L9 v), where §; = flz; w)

=1

Want
® not just fit training data well

® generalise to novel and unseen instances
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Setup to Estimate Generalisation

Need to estimate error on test data without training on test data!
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Setup to Estimate Generalisation

Need to estimate error on test data without training on test data!

D= {Z)traim Dtest}

Cross Validation

L {Z)trainl 5 Z)testl }, cees {@trainKi z)testK}

® partition data into train/test in different ways
o Leave-1-out cross validation
o Leave-K-out cross validation

e for each partition: train model on training data — test error on test data
® ‘best’ model = model from partition with lowest test error

® typically used for ‘small’ data
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Setup to Estimate Generalisation

But models have hyper-parameters!

@ informatics



Setup to Estimate Generalisation

But models have hyper-parameters!

D = {Drrain; Dval; Drest}

@ informatics



Setup to Estimate Generalisation

But models have hyper-parameters!

D = {Drrain; Dval; Drest}

Train—Val-Test

® cannot tune on training set—need values that generalise!
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Setup to Estimate Generalisation

But models have hyper-parameters!
D = {Drrain; Dvat; Drest}

Train—Val-Test
® cannot tune on training set—need values that generalise!

® cannot tune on test set—peeking at ‘unseen’ data!

® tune hyper-parameters on D,
o for every candidate set of hyper-parameters, train on Dyain
o evaluate erroron Dy,

o ‘best’ hyper-parameters = lowest error on D
® use model trained with ‘best” hyper-parameters — test error on test data

e typically used for ‘big’ data; hard to cross validate with partitions
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Modelling Generalisation Error

D = {(z, n),..., (N5, yn)} ~ po (T Y)
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Modelling Generalisation Error

D = {(z, 11),.... (N, YN} ~ P (T Y)

Targets need not be unique
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House 1= x; ={3BHK, garden=T, sqft=1600} y; =sale price =425K
House 2 = x5 ={3BHK, garden=T, sqft=1600} ys = sale price =415K
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Modelling Generalisation Error

D = {(z, 11),.... (N, YN} ~ P (T Y)

Targets need not be unique
y~ po(ylo)

House 1= x; ={3BHK, garden=T, sqft=1600} y; =sale price =425K
House 2 = x5 ={3BHK, garden=T, sqft=1600} ys = sale price =415K

Model prediction
J~ puw(fl@
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Bias and Variance

Expected Target Error
Targets sampled as y ~ pp (y|x).
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Bias and Variance

Expected Target Error
Targets sampled as y ~ pp (y|x).

E[(5- v)°lz] =E[§* - 29y + ||
= 9 - 20E[ylz] + E[¢’|z|
= 9" — 20 E[yla] + E[y|=]* + Var[y|a]
= (- E[ylz])? + Var[y|=]
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Bias and Variance

Expected Target Error
Targets sampled as y ~ pp (y|x).

E[(5- v)°lz] =E[§* - 29y + ||
= 9 - 20E[ylz] + E[¢’|z|
= 9" — 20 E[yla] + E[y|=]* + Var[y|a]
= (- E[ylz])? + Var[y|=]
2 (- yx)? + Var[ylz]

~_—— N— —
residual Bayes error
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Bias and Variance

Expected Test Error

Assume model (py) trained on D ~ py(x, 3); compute predictions on .
Predictions generated as § ~ py (7).
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Bias and Variance

Expected Test Error

Assume model (py) trained on D ~ py(x, 3); compute predictions on .
Predictions generated as § ~ py (7).

E[(5-y?] =E[(§ - y)?] + Var[y]
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Bias and Variance

Expected Test Error

Assume model (py) trained on D ~ py(x, 3); compute predictions on .
Predictions generated as § ~ py (7).

E[(§-9)*] = E[(§- y)?] + Var[y]
= B[4 — 20yx + 9] + Var[y]
= yi -2y, E[7] + E[@Z] + Var[y] (linearity of expectation)
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Bias and Variance

Expected Test Error

Assume model (py) trained on D ~ py(x, 3); compute predictions on .
Predictions generated as § ~ py (7).

E[(5- 9] =B[(§ - y)?] + Var[y]
=E[y? - 20y + §] + Var[y]
=12 - 2y, E[) +E[g}2] + Var[y] (linearity of expectation)
=12 — 2y, B[9] + E[§]% + Var[§] + Var[y] (expression for variance)
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Bias and Variance

Expected Test Error

Assume model (py) trained on D ~ py(x, 3); compute predictions on .
Predictions generated as § ~ py (7).

E[(5- 9] =B[(§ - y)?] + Var[y]
=E[y? - 20y + §] + Var[y]
=12 - 2y, E[) +E[g}2] + Var[y] (linearity of expectation)
=12 — 2y, B[9] + E[§]% + Var[§] + Var[y] (expression for variance)

= (y» —E[ ]) +Var[g] + Var[y]
— Y Y
bias variance  Bayes error
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Bias and Variance: Schematic

§ from one

contours of training set

expected loss /
residual A

blas)(Eb}]
T XX
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Bias and Variance: Schematic

§ from one

training set Generalisation ErrOI’:

j?fi%"‘“”’?( . average squared length of residual || — ||?
bias“,_/\»,)(’\E[Y]

contours of
expected loss

Bias:

average squared length of bias ||y — E[#]||?

Variance: spread of green x’s

Bayes error: spread of black x’s

Figures: Roger Grosse - Generalization




Bias and Variance: Schematic

§ from one

contours of training set

expected loss /
residual A

blas)(Eb}]
T XX

contours of
expected loss
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Generalisation Error:

average squared length of residual || — ||?

Bias:

average squared length of bias ||y — E[ 7]

Variance: spread of green x’s

Bayes error: spread of black x’s

12

Figures: Roger Grosse - Generalization



Bias and Variance: Schematic

§ from one

contours of training set

expected loss /
residual ./

blas)(E[SI]
T XX

contours of
expected loss
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Bias and Variance: Schematic

§ from one

contours of training set

expected loss /
residual ./

blasXE[SI]
T XX

contours of
expected loss
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Variance

Bias

Model Complexity

Figures: Roger Grosse - Generalization



Generalisation

Improving Generalisation




Strategies for Improving Generalisation

Primarily concerned with
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Strategies for Improving Generalisation
Primarily concerned with

® Model capacity - hyper-parameter

® Early stopping ® E.g. degree M of polynomial, # NN layers
® tuneon avalidation set
® Ensembles

L. Dangerous as can simplify model too much!
® Regularisation & P




Strategies for Improving Generalisation
Primarily concerned with

® Reducing capacity

® Ensembles

error

® Regularisation

#epochs

Stop training when generalisation error starts to increase
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Strategies for Improving Generalisation

Primarily concerned with

® Reducing capacity ® Train different models on random subsets of training data

e Early stopping ...similar to cross validation
® Averaging predictions from multiple models reduces variance

e Regularisation Ensemble: set of trained models whose predictions are combined

X

contours of
expected loss

Y
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Strategies for Improving Generalisation
Primarily concerned with

® Reducing capacity
® Early stopping

® Ensembles
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Regularisation

Key Idea

Penalise parameters that may be
by adding a “complexity” cost.
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Regularisation

Key Idea

Penalise parameters that may be and unlikely to generalise well,
by adding a “complexity” cost.

N
Jw)=1 > Lifimw,)+ R(w)
=1

——
train loss regulariser

* Requires model parameters to be continuous

sc\‘ "‘c THE UNIVERSITY of EDINBURGH
A informatics



Regularisation: Linear Regression

Penalising polynomials with large coefficients, should get less “wiggly” solutions.
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Regularisation: Linear Regression

Penalising polynomials with large coefficients, should get less “wiggly” solutions.

Lo regularisation
R(w) = A|wll?

Don’t shrink the bias term wyg!
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Regularisation: Linear Regression

Penalising polynomials with large coefficients, should get less “wiggly” solutions.

Lo regularisation
R(w) = A|wll?

Don’t shrink the bias term wyg!

Solved w
w=(Td+ 1) 0Ty
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Regularisation: Linear Regression

Penalising polynomials with large coefficients, should get less “wiggly” solutions.

Lo regularisation Optimisation
= 2 1 & .
R(w) = A Vo = 5 2 VL' + VR
Don’t shrink the bias term wp! =1
w=w-— U(Vw.ﬁi + VwR) (SGD)

Solved w ‘
=w-— U(Vw.ﬂ + 2/111))
w=(Td+ 1) 0Ty .
=(1-2n)w—-nVy, L'
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Regularisation: Linear Regression

Penalising polynomials with large coefficients, should get less “wiggly” solutions.

Lo regularisation Optimisation
= 2 1 & .
R(w) = A Vo = 5 2 VL' + VR
Don’t shrink the bias term wp! =1
w=w-— U(Vw.ﬁi + VwR) (SGD)

Solved w ‘
=w-— U(Vw.ﬂ + 2A'w)

w=(Td+ 1) 0Ty .
=(1-2n)w - nVy,L'

Each iteration shrinks weights by factor (1 — 2nA): weight decay
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Regularisation: Schematic
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Regularisation: Schematic

Way ® 7 (w)isthe sum of two parabolic “bowls”

...also a parabolic “bowl”

(
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Regularisation: Schematic

Way ® 7 (w)isthe sum of two parabolic “bowls”

...also a parabolic “bowl”

@ ® Joint minimum on line between minimum of

< error and origin

...also called ridge regression
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Regularisation: Example

Figures: C. Bishop - PRML
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Regularisation: Example
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Figures: C. Bishop - PRML
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Regularisation: Example

[

-1

0 1 Figures: C. Bishop - PRML
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Regularisation: Example

1
1 Training
Test
t
0 2]
Z 05
=
-1 /
0
-35 30 -25 -20

In A

Figures: C. Bishop - PRML
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Summary

® What is Generalisation?

Materials credit: Roger Grosse - Generalization
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Summary
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o Overfitting vs. Underfitting

o Train/Test error: # Training examples, # Model parameters
o Hyper-parameters
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o Train/Test error: # Training examples, # Model parameters
o Hyper-parameters

o

® How do we characterise/measure it?
o Test error: Data partitioning with cross validation, val/test splits
o Biasvs. Variance: relation to overfitting / underfitting

® What can we do to improve it?
o Multiple options: reduce capacity, early stopping, ensemble, regularisation
o Regularisation: Ly for linear regression—solution, optimisation
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