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® What is Generalisation? Generalisation

® How do we characterise/measure it? ] .
) ) What is Generalisation?
® What can we do to improve it?
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Generalisation Reasoning about Generalisation

Overfitting Underfitting
® Fittraining data well; unseen data poorly ® Fits both training and unseen data poorly
® Reason: accidental regularities ® Reason: insufficient regularities

® Reason: memorisation

® Model has very large ® Model has insufficient
Machine Learning
® ob dat
observe data ~ # model parameters
® learn to model observed data (training data)
° to unseen, novel data (test data)
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Overfitting vs. Underfitting: Example Reasoning about Generalisation: Qualitative

Training Data

® More = better generalisation
o close training example likely test
o fewer accidental regularities error

error

® Less = lower training error

O easier to memorise train
error

o fewer regularities to capture

model just right

# training examples

Figures: C. Bishop - PRML
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Reasoning about Generalisation: Qualitative Tuning Model Capacity

Model Parameters .
Data requirements

® More = better trainingerror
o better flexibility
o easier to fit true and accidental
regularities

e Different data requires different capacity

® Need “controls” to control capacity
® “controls” = model hyper-parameters

error

o Regression: polynomial order
o Naive Bayes: # attributes, bounds on o2
o Decision Trees: # nodes

® Much more = poor generalisation
O easier to memorise

® Much less = poor generalisation
o struggle to capture regularities

# model parameters Tune to minimise
Goldilocks Zone: Sufficient capacity to learn true regularities, Figures: Stable Diffusion (Huggingface)
T — but not enough to memorise or exploit accidental regularities. 4 5
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Beyond Fitting Training Data
Optimising an error function defined as the average loss over training set:
&
Generalisation v Z L(3; yi), where §; = f(z;; w)
=1
Measuring Generalisation
Want
® not just fit training data well
® generalise to novel and unseen instances
6
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Setup to Estimate Generalisation Setup to Estimate Generalisation

Need to estimate error on test data without training on test data! But models have hyper-parameters!
D= {Dtrainiﬂtest} D= {DtrainQDval;Dtest}

Train—Val-Test

Cross Validation ® cannot tune on training set—need values that generalise!

® {Drrainy; Drest, }: - - -» { Dtrain s Drestyc } ® cannot tune on test set—peeking at ‘unseen’ data!
® partition data into train/test in different ways
o Leave-1-out cross validation
o Leave-K-out cross validation

® tune hyper-parameters on D,
o forevery candidate set of hyper-parameters, train on Dain
o evaluate error on D,y

e for each partition: train model on training data — test error on test data o ‘best’ hyper-parameters = lowest error on Dy
® ‘best’ model = model from partition with lowest test error ® use model trained with ‘best” hyper-parameters — test error on test data
e typically used for ‘small’ data o typically used for ‘big’ data; hard to cross validate with partitions

Modelling Generalisation Error Bias and Variance

Expected Target Error

Targets sampled as y ~ pp (y|T).
D = {1, 1), ., (2343} ~ P 9) &

~ 2 ~ ~ 2
Targets need not be unique E[(§ - v)*|@| = E[§* - 2jy + 1|«]
Y~ pp(ylx) = Z)Q - 29E[y|x] + E[gfl:c] (linearity of expectation)
= QQ - 249E[ylx] + E[y|:[:]2 + Var[y|x] (expression for variance)

House 1= x; ={3BHK, garden=T, sqft=1600 =sale price = 425K N 2
1 = (3BHK, gardenT, sGTE=1000) 1 =salepr = ()~ Elyla))? + Var[yla]
House 2 = 5 ={3BHK, garden=T, sqft=1600} yo =sale price =415K

2 (- yo)?+ Var[yla]
Model prediction residual Bayes error

I~ puw(l@)
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Bias and Variance Bias and Variance: Schematic

Expected Test Error 5 from on o
contours of tainng set Generalisation Error:

expected loss

Assume model (p,,) trained on D ~ pyp (x, y); compute predictions on . ./rje'srifdrgra]”;{,’?(E% average squared length of residual || — 4|
Predictions generated as § ~ py(g|x). bias %, 9l .
Y, " Bias:
E[(§- y)Q] =E[(§- y*)Q] + Var[y] average squared length of bias || yx« — E[9]]|?
Y

= E[y? - 20y + 7] + Var[y] ~ . Variance: spread of green x’s

0 ’,
=92 - 24 E[9] + E[@f] + Var[y] (linearity of expectation) oo Bayes error: spread of black x’s
= yi 2y« E[ 9] + E[y]2 + Var[§] + Var[y] (expression for variance)
_______ X
)
= (g« — E[9])" + Var[§] + Var[y] y
—_—— —— —— 72 g
bias variance  Bayes error
Y, )
X Figures: Roger Grosse - Generalization
8 9
Bias and Variance: Schematic
contours of
expected loss
residL}»a_I»_»_
. blas S Total Error
Y, -
. Generalisation
[ g
Y g
X Variance . . .
Improving Generalisation
ovpacied ons
X Bias
Yy Model Complexity
Y

Figures: Roger Grosse - Generalization
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Strategies for Improving Generalisation
Primarily concerned with

® Model capacity - hyper-parameter

e Early stopping ® E.g. degree M of polynomial, # NN layers

® tune on avalidation set
® Ensembles

L. Dangerous as can simplify model too much!
® Regularisation

@ informatics

Strategies for Improving Generalisation

Primarily concerned with

® Reducing capacity ® Train different models on random subsets of training data
...similar to cross validation

® Early stoppin
ystopping ® Averaging predictions from multiple models reduces variance

® Regularisation Ensemble: set of trained models whose predictions are combined

X

contours of
expected loss
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Strategies for Improving Generalisation
Primarily concerned with

® Reducing capacity

® Ensembles

error

® Regularisation

#epochs

Stop training when generalisation error starts to increase
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Regularisation

Key Idea

Penalise parameters that may be and unlikely to generalise well,
by adding a “complexity” cost.

N
Tw) =5 Y Lifmuw. )+ Rw
=1

N——
train loss regulariser

* Requires model parameters to be continuous
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Regularisation: Linear Regression

Penalising polynomials with large coefficients, should get less “wiggly” solutions.

L regularisation Optimisation
= 2 1 N .
R(w) = Aljwll Vo =5 0 VLl + VuR
Don’t shrink the bias term wy! =1
w=w— q(vwﬂ + VU,R) (SGD)

Solved w )
=w- r](Vw.EZ + 2/1w)

w= (PTO+ A1) 10Ty )
=(1-2p)w - nVu,L*

Each iteration shrinks weights by factor (1 — 2y): weight decay
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Regularisation: Example
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Figures: C. Bishop - PRML
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Regularisation: Schematic

w2

©
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p
N
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® 7 (w) isthe sum of two parabolic “bowls”

...also a parabolic “bowl”

® Joint minimum on line between minimum of

error and origin

...also called ridge regression

Regularisation: Example

Training
Test

—

-35 =30 .\ 725 -20
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Figures: C. Bishop - PRML
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Summary

® What is Generalisation?

Model’s ability to fit to future, unseen data

o Overfitting vs. Underfitting

o Train/Test error: # Training examples, # Model parameters
o Hyper-parameters

[¢]

® How do we characterise/measure it?
o Test error: Data partitioning with cross validation, val/test splits
o Bias vs. Variance: relation to overfitting / underfitting

® What can we do to improve it?
o Multiple options: reduce capacity, early stopping, ensemble, regularisation
o Regularisation: Lo for linear regression—solution, optimisation

Materials credit: Roger Grosse - Generalization
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