Applied Machine Learning (AML)

Optimisation

Oisin Mac Aodha • Siddharth N.

Core Questions

- What task am I trying to solve?
- How should I model the problem?
- How should I represent my data?
- How can I estimate the parameters of my model?
- How should I measure the performance of my model?

Optimisation

Why Optimisation?

Main idea: "learning" → continuous optimisation

- Linear regression
- Logistic regression
- Neural networks

•••

Maximum Likelihood

$$\ell(\mathbf{w}) = \log p(\mathbf{x}_1, y_1, \mathbf{x}_2, y_2, \dots, \mathbf{x}_N, y_N | \mathbf{w})$$

$$= \log \prod_{i=1}^{N} p(\mathbf{x}_i, y_i, | \mathbf{w})$$

$$= \sum_{i=1}^{N} \log p(\mathbf{x}_i, y_i, | \mathbf{w})$$

E.g.
$$\mathsf{NLL}(w) = -\ell(w)$$

Why Optimisation?

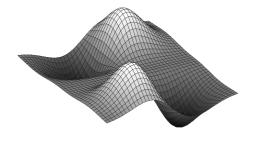
Result: An "error function" $\mathcal{L}(w)$ to minimise

Error function

- For fixed data D, every setting of weights results in some error
- Learning ≡ descending error surface
- When data is iid

$$\mathcal{L}(\mathbf{w}) = \sum_{i} \mathcal{L}^{i}(\mathbf{w})$$

for each data point



informatics

2

3

informatics

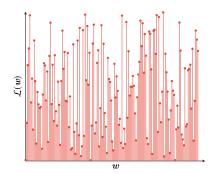
Role of Smoothness

Unconstrained

- minimisation impossible
- ullet ...can only search through all w

Constrained/Continuous

 $m{\mathcal{L}}(w)$ provides information about $m{\mathcal{L}}$ at nearby values



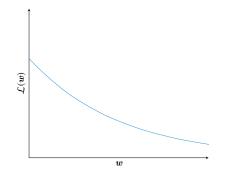
Role of Smoothness

Unconstrained

- minimisation impossible
- ullet ...can only search through all w

Constrained/Continuous

• $\mathcal{L}(w)$ provides information about \mathcal{L} at nearby values



Role of Derivatives

Check: perturb w_i keeping all else the same; does error \uparrow / \downarrow ?

Calculus

- for differentiable \mathcal{L} , partial derivatives $\frac{\partial \mathcal{L}}{\partial w_i}$
- vector of partial derivatives ≡ gradient of the error

$$\nabla_{w} \mathcal{L} = \left(\frac{\partial \mathcal{L}}{\partial w_1}, \frac{\partial \mathcal{L}}{\partial w_2}, \dots, \frac{\partial \mathcal{L}}{\partial w_N}\right)$$

• direction of steepest error ascent $(-\nabla_w \mathcal{L} \text{ for descent})$

Key Challenges

- ullet Computing $abla_w \mathcal{L}$ efficiently
- Minimising error with gradient
- Location of minimiser

Optimisation Algorithms

Optimisation

General Optimisation Problem

Components

- procedure to compute $\mathcal{L}(w)$
- procedure to compute $\nabla_{\!w} \mathcal{L}(w)$

 $\min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w})$

- **Aside**
- some others don't use gradients
- some use higher-order gradients...not covered here

Basic Optimisation Algorithm

Require: stopping error ϵ , step size η

1:
$$w \leftarrow \text{initialisation}$$

2: while
$$\mathcal{L}(\mathbf{w}) > \epsilon$$
 do

3: calculate
$$g = \nabla_w \mathcal{L}(w)$$

4: compute direction d from w, $\mathcal{L}(w)$, g

5:
$$w \leftarrow w - \eta d$$

6: return $oldsymbol{w}$

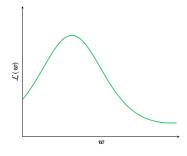
$$\boldsymbol{w}_0, \qquad \qquad \boldsymbol{w}_1, \qquad \qquad \boldsymbol{w}_2, \qquad \ldots$$

$$\mathcal{L}(\mathbf{w}_0), \qquad \mathcal{L}(\mathbf{w}_1), \qquad \mathcal{L}(\mathbf{w}_2), \qquad .$$

$$\nabla_{w} \mathcal{L}(w_0), \quad \nabla_{w} \mathcal{L}(w_1), \quad \nabla_{w} \mathcal{L}(w_2), \quad \dots$$

Choosing a direction

Simple choice: $d = \nabla_w \mathcal{L}$ locally steepest direction



Recall (multi-variate) Taylor theorem: for $w \in \mathbb{R}^N$ and perturbation $\delta \in \mathbb{R}^N$ such that $a = w - \delta$

$$\mathcal{L}(w) \approx \mathcal{L}(a) + \nabla_w \mathcal{L}(a)^\top \delta + \frac{1}{2} \delta^\top \nabla_w^2 \mathcal{L}(a) \delta + \dots$$
$$\approx \mathcal{L}(a) + \nabla_w \mathcal{L}(a)^\top \delta$$

(dropping higher order terms for small δ)

$$\therefore \mathcal{L}(a+\delta) = \mathcal{L}(a) + \nabla_{w} \mathcal{L}(a)^{\top} \delta$$

which is minimised at $\, \delta = - \eta \, \nabla_{\! w} \mathcal{L}(a) \,$ as

$$\mathcal{L}(a - \eta \nabla_{w} \mathcal{L}(a)) = \mathcal{L}(a) - \eta \|\nabla_{w} \mathcal{L}(a)\|^{2}$$

$$\implies \mathcal{L}(a - \eta \nabla_{w} \mathcal{L}(a)) \le \mathcal{L}(a) \qquad (\text{for } \eta > 0)$$

Taking a step along δ cannot increase value "locally"

Gradient Descent

Gradient Descent

Generic Optimisation

Require: stopping error ϵ , step size η

1:
$$w \leftarrow \text{initialisation}$$

2: while
$$\mathcal{L}(w) > \epsilon$$
 do

3: calculate
$$g = \nabla_w \mathcal{L}(w)$$

4: compute direction
$$d$$
 from w , $\mathcal{L}(w)$, g

5:
$$w \leftarrow w - \eta d$$

6: return $oldsymbol{w}$

Gradient Descent

Require: stopping error ϵ , step size η

1:
$$w \leftarrow \text{initialisation}$$

2: while
$$\mathcal{L}(w) > \epsilon$$
 do

3: calculate
$$g = \nabla_w \mathcal{L}(w)$$

4: compute direction
$$d = g$$

5:
$$w \leftarrow w - \eta g$$

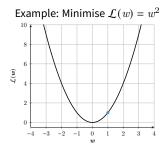
6: return $oldsymbol{w}$

Effect of Step Size (η)

Step Size (η)

Sometimes called *learning rate*

- $\eta > 0$
- η too small \rightarrow too slow



Take
$$\eta = 0.1$$

$$w_0 = 1.0$$

$$w_1 = w_0 - 0.1 \cdot 2w_0 = 0.8$$

$$w_2 = w_1 - 0.1 \cdot 2w_0 = 0.64$$

:

$$w_2 = w_1 - 0.1 \cdot 2w_0 = 0.512$$

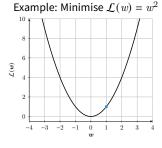
$$w_{25} = 0.0047$$

Effect of Step Size (η)

Step Size (η)

Sometimes called *learning rate*

- $\eta > 0$
- η too small \rightarrow too slow
- η too large \rightarrow instability



Take
$$\eta = 1.1$$

$$w_0 = 1.0$$

 $w_1 = w_0 - 1.1 \cdot 2w_0 = -1.2$

$$w_2 = w_1 - 1.1 \cdot 2w_0 = 1.44$$

$$w_2 = w_1 - 1.1 \cdot 2w_0 = -1.72$$

$$w_2 = w_1$$
 1.1 2 $w_0 = w_{25} = 79.50$

Heuristic for step size (η)

Require: stopping error ϵ , step size η 1: $w \leftarrow \text{initialisation}$ 2: while $\mathcal{L}(w) > \epsilon$ do compute $g = \nabla_w \mathcal{L}(w)$ compute direction d from w, $\mathcal{L}(w)$, g5: $\ell_{-} = \mathcal{L}(w)$ ▶ error before update $w \leftarrow w - \eta d$ 7: $\ell_{+} = \mathcal{L}(w)$ > error after update if $\ell_{+} \geq \ell_{-}$ then ▶ if error increases $\eta \leftarrow \eta/2$; revert w▶ reduce step size ▶ if error decreases 10: else 11: $\eta \leftarrow 1.1\eta$ ▶ speed up slightly 12: return w

informatics

10

11

Gradient Computation

Recall that gradient $\nabla_{w} \mathcal{L}(w)$ is computed over (iid) data $\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$

$$\begin{split} \nabla_{\!\!\boldsymbol{w}}\mathcal{L}(\boldsymbol{w}) &= \nabla_{\!\!\boldsymbol{w}} \left[-\frac{1}{N} \sum_{i=1}^N \log p(y_i|\boldsymbol{x}_i, \boldsymbol{w}) \right] \\ &= -\frac{1}{N} \sum_{i=1}^N \nabla_{\!\!\boldsymbol{w}} \log p(y_i|\boldsymbol{x}_i, \boldsymbol{w}) = -\frac{1}{N} \sum_{i=1}^N \nabla_{\!\!\boldsymbol{w}} \mathcal{L}^i(\boldsymbol{w}) \end{split}$$
 (e.g. logistic regression)

Challenge

- ullet Estimation requires evaluating gradients at all N data points
- Fine if N is small, but if N is large? Say millions?
- Can we get a "good enough" gradient from fewer data points? Maybe one!?

Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

Idea: Compute update for parameter with just a single instance

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \boldsymbol{\eta} \cdot \nabla_{\!\!\boldsymbol{w}} \mathcal{L}^i(\boldsymbol{w})$$

Indexing

- Choose randomly for $i \in \{1, ..., N\}$
- $\bullet \ \mathbb{E}\left[\nabla_{\!w}\mathcal{L}^i(w)\right] = \nabla_{\!w}\mathcal{L}(w)$
- provides an unbiased estimate of the gradient at each step

Features

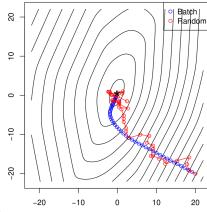
- ullet Cost per iteration independent of N
- Potential savings in memory usage
- Can be noisy in practice

Stochastic Gradient Descent — Example

Gradient Descent

Problems

Example with N = 10, D = 2 comparing standard versus stochastic gradient descent



Blue standard steps $O(N \times D)$ **Red** stochastic steps O(D)

Characteristics

- work well far from optimum
- struggle close to optimum

Figures: Ryan Tibshirani - Convex Optimisation

informatics

13

Stochastic Gradient Descent — Mini-batches

Idea: Compute update for parameter with a *few* random instances chosen as $I \subseteq \{1, \ldots, N\}$, such that |I| = B, $B \ll N$.

$$\mathbf{w} \leftarrow \mathbf{w} - \mathbf{\eta} \cdot \frac{1}{B} \sum_{i \in I} \nabla_{\mathbf{w}} \mathcal{L}^{i}(\mathbf{w})$$

Again, we are approximating the full gradient using an unbiased estimate

$$\mathbb{E}\left[\frac{1}{B}\sum_{i\in I}\nabla_{\!w}\mathcal{L}^i(w)\right] = \nabla_{\!w}\mathcal{L}(w)$$

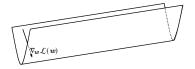
Features

- reduces the variance of the gradient estimator by 1/B
- also B times more expensive to compute $O(B \times D)$

14

Problems With Gradient Descent

- Setting the step size η
- Shallow valleys
- Surface curvature
- Local minima



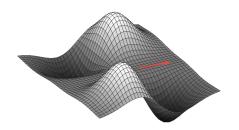
- Gradient descent slows down in shallow valleys
- Incorporate momentum

$$d \leftarrow \beta d + (1 - \beta) \eta \cdot \nabla_{w} \mathcal{L}(w)$$

• Have to choose both η and β

Problems With Gradient Descent

- Setting the step size η
- Shallow valleys
- Surface curvature
- Local minima



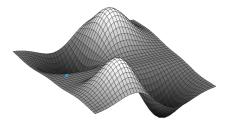
- Gradient need not point towards optimum!
 Note: locally steepest direction
- Local curvature is measured by the Hessian: $H = \nabla_w^2 \mathcal{L}(w)$

Summary

- Optimisation is a complex field
 - o How and why we convert learning problems into optimization problems
 - o Gradient Descent / Stochastic Gradient Descent
 - o Issues with Gradient Descent
- Many variants providing better stability and convergence
 E.g. momentum, acceleration, averaging, variance reduction, ...
- See AdaGrad, Adam, AdaMax, ... and many more!

Problems With Gradient Descent

- Setting the step size η
- Shallow valleys
- Surface curvature
- Local minima



- Gradient at *any* minimum is 0!
- Convex functions: local minimum = global minimum e.g. squared error, logistic regression likelihood, ...
- No standard solution best to rerun optimiser from different initialisations

15 THE UNIVERSITY OF EDINBURGH Informatics