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Core Questions

What task am | trying to solve?

How should I model the problem?

How should I represent my data?

How should | measure the performance of my model?
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Optimisation

Why Optimisation?

Main idea: “learning” — continuous optimisation

® Linear regression Maximum Likelihood

® Logistic regression

® Neural networks £(w) = log p(x1, y1, T2, 1o,

N
=log[ | p(a; ys w)
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log p(zs, yi, |w)
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E.g. NLL(w) = —¢(w)
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Why Optimisation? Role of Smoothness
Result: An “error function” £ (w) to minimise

minimisation impossible

...can only search through all w

Constrained/Continuous
® [(w) provides information about £ “ ”" " ”H" H
|| |||II nl“

at nearby values

For fixed data D, every setting of
weights results in some error

L(w)

Learning = descending error surface
When data is iid

i H f || V
w

L(w) = sz(w)

for each data point

Role of Smoothness Role of Derivatives

Check: perturb w; keeping all else the same; does error 7/ ] ?

minimisation impossible

...can only search through all w Calculus Key Challenges
Q AN o for differentiable £, partial derivatives g—;fi ® Computing V,, L efficiently
Constrained/Continuous I ® vector of partial derivatives = gradient of the error ® Minimising error with gradient
—_ o . T
® L(w) provides information about £ Voo oL oL or ) Location of minimiser
at nearby values w ow gws " dwn

e direction of steepest error ascent
(=VwL for descent)
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Optimisation

General Optimisation Problem

Basic Optimisation Algorithm

Require: stopping error ¢, step size p
1: w <« initialisation
2: while £(w) > edo
3: calculate g = V. L(w)

4: compute direction d from w, £(w), g
5: we— w-rnd
6: return w
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wo,
L(wo),

VwL(wo),

wy, w2,

L(wy), L(wy),

VuL(wi), Vel(wr),

Optimisation Algorithms

Components
® procedure to compute £ (w)

® procedure to compute V,,.L (w)
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Choosing a direction

min L (w)

some others don’t use gradients
some use higher-order gradients

...not covered here

Simple choice: d =V, L locally steepest direction

L(w)
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Recall (multi-variate) Taylor theorem:
for w € R and perturbation § € RV suchthata= w— 6

L(w) ~ L(a) + VpLl(a)Td + %JTVE,L(a)é .

~ L(a) + VwL(a)Té
(dropping higher order terms for small §)

L L(a+8)=L(a) + VpLl(a)Td
which is minimised at § = —nVyL(a) as

L(a-nVwL(@) = L(a) - n]|VwL(a)|®
= L(a-nVwL(a)) < L(a) (forn > 0)



Gradient Descent

Generic Optimisation Gradient Descent
Require: stopping error ¢, step size Require: stopping error e, step size
. 1: w « initialisation 1: w <« initialisation
Gradient Descent . .
2: while £(w) > edo 2: while £L(w) > edo
3: calculate g = V,, L (w) 3: calculate g = V,, L(w)
4: 4:
5: we— w-nd 5: we— w-1ng
6: return w 6: return w
€ informatics
Effect of Step Size (1) Effect of Step Size (1)
. Example: Minimise £(w) = w?>  Taken=0.1 . Example: Minimise £(w) = w?>  Taken=1.1
Step Size (1) e ) Step Size (1) i
. . wy = 1.0 . lled | . wp = 1.0
8 8
Sometimes called learning rate wy = wp — 0.1 2up = 08 Sometimes called learning rate wy = g — 11 - 2up = —1.2
®n>0 3 ws = wy — 0.1 2up = 0.64 ®n>0 3 we = wy — 1.1 2up = 1.44
: 9
® ptoosmall — too slow T : ® ptoo small — too slow !

2 : . e

. wo = wy — 0.1 2wy = 0.512 ® ntoo large - mStablllty 0 wy = wp - L.1-2wp =-1.72

-4 -3 -2 -1 0 1 2 3 4 wos = 0.0047 -4 -3 -2 -1 0 1 2 3 4 woy = 79.50
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Heuristic for step size (1)

Require: stopping error ¢, step sizen
1: w « initialisation
2: while L(w) > edo
3: compute g = V, L(w)

4: compute direction d from w, L(w), g

5: = L(w) > error before update

6: we— w-nd

7 t, = L(w) > error after update

8: if £, > £_then > if error increases

9 n < n/2; revert w > reduce step size
10: else > if error decreases
11: n e 1llp > speed up slightly
12: return w

10

Gradient Computation
Recall that gradient V,, £ (w) is computed over (iid) data D = {(x1, v1), - - -, (&N, yN) }-

N
1
VL (w) =V, _NZ log p(ys|x;, w) (e.g. logistic regression)
=1
1

Ni VL' (w)

M=

N
1
= —NZleogp(yilwi, w) = -
=1

1
—_

Estimation requires evaluating gradients at all N data points
Fine if Nis small, but if Nis large? Say millions?

Can we get a “good enough” gradient from fewer data points? Maybe one!?
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Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

Idea: Compute update for parameter with just a single instance

W w—1- V,I,Li(w)

Features
Choose randomly for i € {1,..., N}
E [VwLi(w)]| = VL (w)

provides an unbiased estimate of the

® Cost per iteration independent of N
® Potential savings in memory usage

® Can be noisy in practice
gradient at each step
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Stochastic Gradient Descent — Example Stochastic Gradient Descent — Mini-batches

Example with N = 10, D = 2 comparing standard versus stochastic gradient descent Idea: Compute update for parameter with a few random instances chosen as
Ic{1,...,N}, suchthat|I| =B, B< N.

1 .
Blue standard steps O(N x D) we w—1- —BZVw.[Z’(w)
Red stochastic steps O(D) el

10

Again, we are approximating the full gradient using an unbiased estimate

= VL (w

i€l

Characteristics E =V L(w)

e work well far from optimum

-10

® struggle close to optimum Features

® reduces the variance of the gradient estimator by 1/ B

-20

® also Btimes more expensive to compute O(B x D)

T T T T T
-20 -10 0 10 20 Figures: Ryan Tibshirani - Convex Optimisation
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Problems With Gradient Descent
® Setting the step size
® Surface curvature
Gradient Descent ® Local minima
Problems ® Gradient descent slows down in shallow valleys
® Incorporate momentum
d— pd+(1-p)n- VpLl(w)
® Have to choose bothnand g
15
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Problems With Gradient Descent

® Setting the step sizep

® Shallow valleys

® |ocal minima

® Gradient need not point towards optimum!
Note: locally steepest direction

® | ocal curvature is measured by the
Hessian: H = V2 £ (w)
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Summary

® Optimisation is a complex field

o How and why we convert learning problems into optimization problems
o Gradient Descent / Stochastic Gradient Descent
o Issues with Gradient Descent

® Many variants providing better stability and convergence
E.g. momentum, acceleration, averaging, variance reduction, ...

® See AdaGrad, Adam, AdaMax, ... and many more!

@ THE UNIVERSITY o EDINBURGH ’
& informatics

Problems With Gradient Descent

® Setting the step sizep
® Shallow valleys

® Surface curvature
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® Gradient at any minimum is 0!

® Convex functions: local minimum = global minimum
e.g. squared error, logistic regression likelihood, ...

® No standard solution
best to rerun optimiser from different initialisations
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