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Nonlinear Data

® |inear classifiers are not capable of separating nonlinear data

® Many real world problems of interest may not necessarily have linearly separable
data
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Nonlinear Data

® |inear classifiers are not capable of separating nonlinear data

® Many real world problems of interest may not necessarily have linearly separable
data

® Decision trees are a popular approach for nonlinear classification and regression

® They operate by recursively partitioning the input feature space and then defining
local models in each of the resulting regions
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Decision Tree Example

Should I go for a walk?

@ informatics



Advantages of Decision Trees

® [ntuitive
® Efficient
® Nonlinear

® General -
o Classification
o Regression

® Can handle mixed data types
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Tree Terminology

® There are three main types of nodes in a tree: root, internal, and leaves

® Each non-leaf node is a parent, and has a left and right child
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2D Example

® In this example, we have 10 2D datapoints, i.e. {zi, ..., 10}, where « € R?

® We have six red (y=1) and four blue (y=2) datapoints

T2
°
°
'o .-
) - u
X1

:“N "‘c THE UNIVERSITY of EDINBURGH
A informatics



2D Example

® At each node, we split the data based on a feature dimension and threshold, here 6

® Then we store the percentage of examples from each class (p.) at the leaves
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2D Example

® We can keep splitting the tree until we reach some predefined stopping criteria

® Note, we split a feature dimension multiple times
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2D Example - Evaluating a Test Datapoint

® How can we predict the class label of a new example =,?

® We simply evaluate each relevant node to find the leaf that contains it
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Applications of Decision Trees

® Due to their speed and performance, decision trees have been applied to many
different tasks
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depthimage == bodyparts =& 3D joint proposals

Human body pose estimation using decision trees from Shotton et al. CVPR 2011.
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Fitting Decision Trees




Decision Tree Learning

® Start with all the data at the root node of the tree
® Grow the tree by recursively splitting the data at each node

® Keeping growing until you reach a specified condition, e.g. the tree reaches a
predefined maximum depth or it is not possible to split the data any further

® Different methods have been proposed over the years, e.g. CART, ID3, ...
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Measuring the Quality of a Split

® How do we determine what threshold and feature dimension to use at each node in
the tree?

® \We should favour splits that result in child nodes that have high ‘purity’, i.e. low
‘impurity’
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Measuring the Quality of a Split

® How do we determine what threshold and feature dimension to use at each node in

the tree?

® \We should favour splits that result in child nodes that have high ‘purity’, i.e. low
‘impurity’

® One common approach for classification is to measure the at each node

o The entropy of a random variable is the average level of ‘information’, ‘surprise’, or
‘uncertainty’ inherent to the variable’s possible outcomes
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Evaluating Entropy

Entropy can be computed using the distribution of datapoints at a given node.
C
Ip(8) = = > pelog, pe
c=1

® (isthe number of classes in the dataset, i.e. y € {1, ..., C}

N

® Sisthe subset of datapoints that have arrived at the node, where S C {(z, y)},_,

® p.isthe proportion of examples from class c that are present at the node, where
pC € [O’ ]-]
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Entropy

We have low when most, if not all, Entropy

the datapoints at a node are from the same 1 ~
class. | / \
/ \

C o/ \
Ig(S5) = _chlogg Pc E / \
c=1 =

0.4
Note, that the expression for entropy is 0.2 | / \
often also notated as H(.5). \
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Alternative Splitting Criteria

There are alternative splitting criteria, e.g. Gini Impurity
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Information Gain

® Now that we can measure the purity at
each node in a tree, we can use this to
determine the quality of different splits

® \We do this measuring the
of a split

Gain(S, 6, d) = 1(S)— %1(51) +

|5
5]

1(5y)

Here |5] = 5] + |5
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Information Gain

® Now that we can measure the purity at

each node in a tree, we can use this to 2
determine the quality of different splits
® We do this measuring the o
of a split
S S,
Gain(S.6.d) = (9= 15 15 + =215

Here |5] = 5] + |5
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Information Gain

® Now that we can measure the purity at 02
each node in a tree, we can use this to 2 °
determine the quality of different splits E.

® We do this measuring the o ° . - g..

of a split u 1
5]
|S] =10
. . E EX o
Gain(S,0, d) = [(S)—| —1(5) + 1(S,) 151l
5] 5] 15,|=3

Here |.S] = [Si] + |5,
Different splits will result in different
Information Gain
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Choosing the Best Split

® Evaluate the Information Gain for each feature dimension and threshold pair at a
given node

® Choose the pair with the largest gain
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Choosing the Best Split

® Evaluate the Information Gain for each feature dimension and threshold pair at a
given node
® Choose the pair with the largest gain

® [ftrying all combinations is impractical, one can choose the best pair from a random

subset
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Stopping Criteria

® Atree can always classify training examples perfectly, i.e.
o Keep splitting each node until there is only one example at each leaf
o These ‘singleton’ nodes will be pure

® This will result in overfitting to the training data, i.e. the model will not generalise
well to new data
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Avoiding Overfitting

® Introduce an additional hyperparameter
o Maximum tree depth
o Minimum number of datapoints per node
o Minimum information gain

® Grow the tree to full depth, and then
‘prune’ it
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Additional Topics



Regression Trees

® We can also model continuous targets using regression trees, i.e. y € R

® The tree models data locally as a piece-wise constant function, where it stores a
different mean value 7; at each leaf node
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Regression Trees

® We can also model continuous targets using regression trees, i.e. y € R

® The tree models data locally as a piece-wise constant function, where it stores a
different mean value 7; at each leaf node
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Regression Trees

® We can also model continuous targets using regression trees, i.e. y € R

® The tree models data locally as a piece-wise constant function, where it stores a
different mean value 7; at each leaf node
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Regression Criteria

® |n the case of regression, our ground Regression Impurity
truth targets are continuous values 25 /

® Asaresult, we require a different

definition of node purity 3 \ /
1
Il = — —7)2 @, |
R(S) =15 ), (1-D) 2, \
ye s
® Ateach leaf we store the mean of all the ' l ‘
datapoints that arrived at the node
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Discrete Features

® Decision trees can handle both continuous or discrete (i.e. categorical) features
® |n practice, popular implementations may not support natively

® For non-ordinal categorical variables it is possible to transform them using a one-hot
encoding
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Trees are Interpretable

samples = 150
value = [0, 50, 50]
class = setosa

‘petal width (cm) < 1.75
qini = 0.
samples = 100
value = [0, 50, 50]
class = versicolor

Sepal length (cm) < 6.95
gini = 0.4444

samples = 3
value = [0, 2, 1]
class = versicolor

Image credit: https://scikit-learn.org/stable/modules/tree.html
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Ensembles of Trees

® Grow an ensemble of K different decision trees:
o Pick arandom subset of the data
o Train a decision tree on this data

» When splitting, choose a random subset of features

o Repeat this K different times
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Ensembles of Trees

® Grow an ensemble of K different decision trees:
o Pick arandom subset of the data
o Train a decision tree on this data

» When splitting, choose a random subset of features
o Repeat this K different times
® Given a new datapoint x at test time:
o Classify & separately using each tree
o Combine the predictions from each individual tree for the final output, e.g. using the
majority vote

® Simple, but can be very effective




	Decision Trees
	Fitting Decision Trees
	Additional Topics

