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The Regression Problem

® For classification problems the target is ,i.e.ye{l,..C}

® Forregression problems the target is ,ieeyeR
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The Regression Problem

® For classification problems the target is ,i.e.ye{l,..C}

® Forregression problems the target is ,ieeyeR

® For linear regression the relationship between the features xand the target yis linear

® Although this is simple and may appear limited, it is
o More powerful than you would expect
o The basis for more complex nonlinear methods
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Example Regression Problems

® Robot inverse dynamics: predicting what torques are needed to drive a robot arm
along a given trajectory

® Electricity load forecasting: generating hourly forecasts days in advance

® Predicting staffing requirements at help desks based on historical data and product
and sales information

® Predicting the time to failure of equipment based on utilization and environmental
conditions

® Predicting the depth of objects in an image
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The Linear Model
® |nsimple linear regression we have a scalar input zand a scalar output

flz,w) = w, + wix
= w'¢(z)

where w = [wg, wi]T and ¢(z) = [1, 2|7

® \We use the notation ¢ (x) to make generalisation easy later
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Simple Linear Regression Example
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Simple Linear Regression Example

The red line depicts our linear fit to the data with two weights/parameters,
intercept wy and slope wy.
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Multiple Linear Regression
® |n multiple linear regression we have a vector x of inputs and a scalar output

flm, w) = w, + wy a1 + ... + wpTp

D

= Wy + Z WLy
d=1

= w'P(x)

where w = [wg, wy, ..., wp] T and ¢(x) = [1, z1, ..., zp]T
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Multiple Linear Regression
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In 2D, instead of a line, we have a plane.
In higher dimensions, this would be a hyperplane.
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Multiple Linear Regression - Example

® Given information about a local habitat, the task is to predict how tall a tree will be
ten years after being planted
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Multiple Linear Regression - Example

Given information about a local habitat, the task is to predict how tall a tree will be
ten years after being planted

y; the height of a tree at location ¢

x; are features describing that habitat at location ¢
o 1 is the average rainfall

o 1, isthe average temperature

o a3 is the percentage of a particular nutrient in the soil

We will assume there is a linear relationship between these features and the target

@ = Wy + W11 + W3x3 + W33
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Interpreting the Model Weights
® Can we interpret the model weights?

U= w,+ wir + w3wy + w33
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Interpreting the Model Weights
® Can we interpret the model weights?

U= w,+ w1 + w3r3 + W33

® The solved weights tell us the contribution of each feature to the final prediction, e.g.
o Aweight that is close to 0 indicates that that feature does not influence the output
o A large positive value, indicates that there is a strong positive relationship
o A large negative value, indicates that there is a strong negative relationship

® However, need to ensure that the data is standardised so that the scale of each
feature is similar
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Standardising the Data

® The input features may have very different scales, i.e. small versus large numbers

® To ensure that we can interpret the relative model weights across the different
dimensions it is advisable to standardise the data
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Standardising the Data

® The input features may have very different scales, i.e. small versus large numbers

® To ensure that we can interpret the relative model weights across the different
dimensions it is advisable to standardise the data

® This simply involves computing the and for each feature
dimension from the data the training set

® \We then subtract this mean and divide by this standard deviation for the data in both
the training and test sets
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Fitting the Model to Data




Fitting the Linear Regression Model to Data

® Assume we are given a training set of N pairs {(x;, yi)}gl

® \We can write these out using matrix notation:

1 21 22 ... wip Y1

1 @1 w2 ... mp (7
o= . . Y=

1 zvm v ... zZND YN

® This design matrix @ is of size Nx (D + 1) and an entry z;; is the j’th component of
the training input x;

® Thus, § = dwis the model’s predicted outputs for the training inputs
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Solving for Model Weights
® This looks like something we have seen in linear algebra:
y=%w

® We know y for our training data and the entries of ®, but we do not know w
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Solving for Model Weights
® This looks like something we have seen in linear algebra:
y=dw
® We know y for our training data and the entries of ®, but we do not know w

® Sowhy not take w = ®~1y?

® Three reasons:
o disnotsquare. Itssizeis Nx (D+1)
o The system is over constrained - (N equations for D + 1 weights)
o The data has noise
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Measuring ‘Goodness of Fit’

® We want a loss function that can tell us how good our fit is.

® One intuitive option is the Sum of Squared Errors (SSE):
N
Lssu(w) = > (yi = )?
=1

N
= (4 - w(2))*
=1

® This penalises large mistakes y — i more than small ones
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Measuring ‘Goodness of Fit’

e Different models (i.e. choices of weights w) will result in different loss values

® Forexample:
o Fory=-0.31+0.57z,the SSE = 0.25

o For ,the SSE = 3.61
o Fory = 2.50 — 0.50z, the SSE = 12.63
Y [ ]
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Error Surface

® For 1D data we can visualise the error for each set of possible weights
® Here, the minimum of this convex error surface is indicated by the values at x

2.0
1.5
1.0
05

S 007

o054
—1.01

-1.5

220 -15 -1.0 -0.5 0.0 O. . 5 2.0
w1

B\ THE UNIVERSITY of EDINBURGH

informatics




Fitting the Linear Model to Data

® \We can write out our loss for the training data as:

N
Lssi(w) = > (yi = wT$(,))”
=1

= ||y — dwl||®
= (y— Qw7 (y - dw)
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Fitting the Linear Model to Data

® \We can write out our loss for the training data as:

N
Lssi(w) = > (yi = wT$(,))”
=1
= ||y - dw||?

= (y—0ow)"(y - dw)

® To solve for w, we take the partial derivative of Lgsp(w) wrt wand setitto0, i.e.

dLssp(w) _
s _ g
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Deriving the Least Squares Solution - 1

® We begin by rewriting the terms of the SSE loss:

Lssp(w) = (y— Pw) T (y - dw)
=(y" —w'®T)(y - dw)
=y'y— Yy dw-wdTy+ wdTdw
=y y-20dTy+ wdTow
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Deriving the Least Squares Solution - 2

® Next we take the partial derivative:

oL 0
SS—E(w) - [yTy_ 2wTdTy + qu)Tq),w]
ow Jw
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Deriving the Least Squares Solution - 2

® Next we take the partial derivative:

oL 17)
—SSE(w) =— [yTy-2wTdTy+ wTdTdw|
ow Jw

® \We can do this one part at a time:

WY _,
ow
(—2wTdTy) _opT
ow B Y
I(wTdTdw) 9T Bap
ow Bl
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Deriving the Least Squares Solution - 3

® From the previous slide we obtained:

aLLE(w) = -20Ty+ 20T dw
Jw
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Deriving the Least Squares Solution - 3

® From the previous slide we obtained:

aLLE(w) = -20Ty+ 20T dw
Jw

® \We set this to 0 to find the closed-form solution, i.e. %ﬁf“’) =0:

0=-20Ty+ 207w
2070w =297y
PTOW=>PTy
w=(PTP) 1dTy
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Sensitivity to Outliers

® |inear regression is sensitive to outliers
® Suppose y = 0.5x+ €, where € is some noise

Y
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Sensitivity to Outliers

® What happens if we add an ‘outlier at and ?
® Here, we are simply adding one new training example
Y
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Diagnositics

® Graphical diagnostics can be useful for checking:
o Isthe relationship obviously nonlinear? Look for structure in errors?

o Are there obvious outliers?

® The goalis not to find all problems - this is difficult. The goal is to find obvious ones
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Nonlinear Regression




Nonlinear Regression

What if there is a nonlinear relationship between your features and the target you wish
to predict?

:“N "‘c THE UNIVERSITY of EDINBURGH
A& informatics



Nonlinear Regression - Transforming Inputs

® Up until now we have set ¢(x) = [1, 2] T

® However, we can transform our inputs in different ways
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Nonlinear Regression - Transforming Inputs

® Up until now we have set ¢(x) = [1, 2] T

® However, we can transform our inputs in different ways

® One example is polynomial regression, ¢(z) = [1, 1, 22, ..., 2M] T

® Here, the dimensionality of our weights w will be the same as ¢ ()
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Polynomial Regression
E)

M=1
¢(z) = [1,2]7

Equivalent to simple linear regression.
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Polynomial Regression

Y
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M=1
¢(z) = [1,2]7

Equivalent to simple linear regression.




Polynomial Regression
Y

M=3
$(2) = [L o2, %7
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Polynomial Regression

Y
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M=3
$(2) = [L o2, %7

B o

M=12
P(z) = [1, 3,42, ..., x'2]7

We have overfit the training data.



Basis Expansion

® We can easily transform the original features x non-linearly into ¢ (x) and perform
linear regression on the transformed features

® For example, we can use a set of M basis functions

¢(@) = [Ly1(2), Y2(@), ... ym(2)] T

® Each of these basis functions takes a vector as input and outputs a scalar value
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Basis Expansion

® Now our design matrix is of size N x (M + 1), where we have M basis functions

I a(z) vo(x1) ... Ym(xr)

- I fr(x2) Yo(x2) ... Ym(x2)

I Yi(zn) Yo(xn) ... Yu(zn)

® Again,welety = [y1,...., yn]T

® We can then minimise Lgsp(w) = ||y — ®wl||? using the same analytical solution as
before
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Radial Basis Functions

® One popular choice of basis functions are Radial Basis Functions (RBFs)
® Each RBF /(),, has two parameters: a centre ¢, and a width ¢2,, and outputs a single
|z - cnll?
Um(x) = exp (—0.5—2

Om,

scalar
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Radial Basis Functions

® One popular choice of basis functions are Radial Basis Functions (RBFs)
® Each RBF /(),, has two parameters: a centre ¢, and a width ¢2,, and outputs a single
|z - cnll?
Um(x) = exp (—0.5—2

Om,

scalar

® One needs to position each basis function at a specified centre location with a given
width

® There are many ways to do this but choosing a subset of the datapoints as centres is
one approach that is quite effective
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Radial Basis Functions - Example

Y

® |n this example, we have a RBF centred on each training point and we use the same
value of o2 for each

® The quality of the fit can strongly depend on the choice of RBF parameters
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Dealing with Multiple Outputs

® Suppose there are K different targets for each input «, i.e. y € RX

® \We introduce a different wy, for each target dimension, and do regression separately
for each one
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Summary

® Linear regression is often useful out of the box

® |tis more useful than it would be seem because linear means linear in the weights.
You can do a nonlinear transform of the data first, e.g., polynomial, RBF, etc.

® The solution for the model weights is computationally efficient to obtain
(pseudo-inverse)

® Danger of overfitting, especially with many features or basis functions
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