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Generative Versus Discriminative Classifiers

® Generative classifiers (e.g. Naive Bayes) model how a class ‘generated’ the feature
vector p(x|y)

® Which we then used for classification

p(yl) o p(x|y)p(y)

® |n contrast, discriminative classifiers do not waste effort modelling the generative
process

® |nstead, they model the posterior p(y|x) directly

@ informatics

Linear Classification

Generative Versus Discriminative Classifiers

® Generative approaches model the class conditional densities p(x|y) and priors p(y)

® Discriminative approaches directly model the posterior p(y|x)

Generative Classifier

Discriminative Classifier
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The Linear Classification Problem

® |n binary linear classification we are

given some input features x, with \
associated class labels y

® The goal is to estimate the parameters w
of a hyperplane that can separate the
data into the two classes

® The decision boundary is the boundary °

7

between these two regions, i.e. where
the two classes are ‘tied’
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Linear Classification Model

® Inbinary linear classification we have a set of input features vector € R” and

binary class labels y € {0, 1}

fle; w) = w, + w1 + ... + wpTp

D
= Wy + Z WqTq
d=1

= w'¢(z)

where w = [wg, wy, ..., wp] T and ¢(x) = [1, 71, ..., zp]T

® To make a prediction we can threshold the output of the function
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1 ifwig(x) >=0
0 ifwig(x) <0

Linear Classifiers in Higher Dimensions

® |n 2D, the decision boundary is represented as a line

® |n 3D, the decision boundary is represented as a plane

® |n higher dimensions, it is a hyperplane
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Geometric Perspective

wT¢(x) = 0is the decision boundary

® | et w be the weights without the bias wy,
then wis normal to the decision boundary

® Ifwy =0, w¢(x) =0isaline passing
though the origin and orthogonal to w

® When wy # 0, it shifts the location of the

decision boundary

4ol

® If pisthe point on the boundary closest to

the origin, then the normal distance from

the boundary to the origin is %
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Linear Separability

® If we can find a hyperplane to separate the data based on the class labels, the
problem is said to be linearly separable
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Linearly separable

Logistic Regression

Linearly non-separable

Linear Separability

o |f we can find a hyperplane to separate the data based on the classes, the problem is
linearly separable

® Causes of non perfect separation
o The linear model is too simple
o Simple features that do not account for all variations
o Thereis noise in the input features
o There are errors in the class labels
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Logistic Regression

® One problem with our linear classifier, f(x; w) = wT¢(x), is that the outputs are
unbounded, i.e. f(x; w) € [—co, 00|

® We would like to model the posterior p(y = 1|x) directly

® To do so, our model predictions need to be in the range [0, 1]

® One solution is to ‘squash’ outputs of f(x; w) so that they remain in the range [0, 1]
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The Logistic Function

® We need a function that returns probabilities, i.e. its outputs are between 0 and 1

® The logistic function provides this

a(2)

_ 1
T 1+ exp(—2)

® As zgoes from —oo to o0, o(2) goes from 0 to 1,
® |t has a ‘sigmoid’ shape, i.e. an ‘S’ like shape
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Shape of the Logistic Function

® Modifying the input to the logistic function changes the shape of the function, i.e. it

changes the output

1
o(z) = —————
) 1+ exp(—2)
1 — 1
] ~
0.8 // 0.8 //
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3 / z /
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0 0
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z2=1+0 z=1-2
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Understanding the Logistic Function

® Here we provide some intuition for how the logistic function works

® As zbecomes very negative we get

® As zbecomes very positive we get
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Logistic Regression
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exp(2)

We model the class probabilities as

1+exp(-2) exp(2)+1

small
1+ small

_ large
" 1+large
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Logistic regression = linear weights + logistic squashing function

p(y = 1z) = o(w' ¢(x))

p(y=0lz) =1 -o(w"¢(x))

o(2) = 0.5 when z = 0, hence the decision boundary is given by wT¢(x) = 0

The decision boundary is a D — 1 hyperplane for a D dimensional input space
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Decision Boundary for Logistic Regression

® The decision boundary for logistic
regression is where
p(y=1lz;w) = p(y=0]x) =0.5

® The decision boundary occurs where
wig(x) =0

® Logistic regression has a linear decision
boundary
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Impact of Weights on Classification

® Here we visualise what happens to the predictions when we change the weights

w=[-2.3,14,1.7"

0 1 2
Ty

w=[~2.3,1.4,1.7]"
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Logistic Regression

® letw=[w,.., wp]T,bethe weight vector without the bias term

® The direction of the vector w affects the orientation of the hyperplane. The

hyperplane is perpendicular to w

® The bias parameter wy shifts the position of the hyperplane, but does not alter the

orientation

® The magnitude of the weight vector ||w|| effects how certain the classifications are

® For small ||w|| most of the probabilities within the region of the decision boundary

will be close to 0.5

® For large ||w|| probabilities in the same region will be close to 0 or 1
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Impact of Weights on Classification

® On the right we set the bias to wy = 0

w=[-2.3,14,1.7"

0 1 2
Ty

T2
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Impact of Weights on Classification
® On the right we set the bias to wy = —wy

w=[-2.3,1.4,1.7]" w=[23,14,1.7]"

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Ty &y
Standard model prediction Negative bias
Dy T VERSTY S EDINBURGH 18
@f informatics

Impact of Weights on Classification
® On the right we scale the weights by a constant w = cw

w=[-23,1.4,1.77 = [-23.2,13.6,17.5]"

T2

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Ty Ty
Standard model prediction Scaled weights
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Impact of Weights on Classification
® On the right we negate all the weights w = —w

w=[-2.3,1.4,1.7]" w=[2.3,—1.4,—1.7]"

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Ty Ty
Standard model prediction Negative weights

Learning Logistic Regression
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Maximum Likelihood Estimation Likelihood for Binary Classification

® \We want to estimate the parameters w of the logistic regression model using data ® We denote our dataset as D = {(x1, y1), (x2, 42), ...(xN, yn) }, where y € {0,1}
® We will do this via maximum likelihood estimation ® We will assume data is independent and identically distributed (i.e. iid assumption)
® Main steps: ® To simplify the notation, we will also assume that the bias term wy is absorbed into

o Write out the likelihood for the model the weight vector, i.e. w = [wo, w, .., wp] T and will let z,, = [1, zu1, ..., Zup] T
o Find the derivatives of the negative log likelihood w.r.t the parameters o .
The likelihood is

o Adjust the parameters to minimise the negative log likelihood

N
p(Dlw) = [ | p(y = yalan; w)

n=1

N
=[Pty =11us w)* (1 = ply = s w)) '~

n=1
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Negative Log Likelihood Maximising the Likelihood
® The likelihood is ® To find the maximum likelihood parameter estimate, we must solve
N ONLL (w)
. f— . y’ﬂ/ — . l_yn . = 0
p(DIw) = [ | p(y=1am w1 - ply = 1|z, w) oy
n=1
) o ) o ® |t turns out that the likelihood has a unique optimum, i.e. it is convex
@ Hence, the negative log likelihood, NLL (1) = - log p(D|w), is given by e Unfortunately, we cannot minimise the NLL(w) directly using a closed form
1 & solution. Instead, we need to use a numerical optimisation method (i.e. gradient
NLL(w) =~ > [ynlog o(w™ @) + (1 = yo) log(1 = o(w,))] descent)
=l ® To minimise it, we solve for the gradient
N
ONLL(w) 1
owg N;(U(U’T Tn) = Yn)Tnd
23
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Visualising the NLL Loss Surface

® NLL loss surface for binary logistic regression applied to the Iris dataset with one
feature and one bias term

Loss function surface
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Figure adapted from Probabilistic Machine Learning: An Introduction, K. Murphy
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More Than Two Classes One-vs-Rest (OVR) Classification
® What if we have more than two classes, T ® |n OvR classification, the idea is to split the data into different “C” versus “not C”
ieye{l,...,C}? problems
® Binary classification is not directly v v ® ® We train a separate classifier, with an associated weight vector w,, for each class
applicable here. We need another 4 ° o o o
approach ¢
v / o o o ° o o o
] [ v/ ° o © ® o © ° o
1
. o o 5 O o 2 = =
(¢} o ]
y=1 y=2 y=3
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One-vs-Rest (OVR) Classification

® Foreach of the C'classes we need to train a separate classifier,
p(y = @) = o(w:$(x))

® To assign a new data point 2 to one of the classes, we need to evaluate it using each
of the different per-class classifiers

® We select the maximum of the different classifiers as the predicted class, i.e.

y = argmax o(we §(x))

® Note that the sum of the probabilities of the different classifiers is not constrained to
be 1

® The OvR approach is a general one that can be applied to any binary classifier
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Properties of the Softmax Function

® The softmax function s() converts a vector of K real numbers, z € R¥, into a
probability distribution of K possible outcomes

exp(z;)

Ay pp——

® |t applies the standard exponential function to each element z; and normalises these
values by dividing by the sum of all these exponentials

® The normalisation ensures that the sum of the components of the output vectoris 1,
ie. XK s(2),=1
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Multinomial (Softmax) Logistic Regression

® An alternative approach is to create a single model which has parameters for all
classes

® Multinomial logistic regression is an extension of binary logistic regression that can
handle multiple classes using the softmax function
exp(w; §(x))

Sic, exp(w] ()

p(y=clx) =

® Notethat0 < p(y=clz) < land ¢ p(y=kz) =1
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Summary

® We discussed linear classification

® \We presented a discriminative approach for linear classification called logistic
regression

® Fora Ddimensional input space, there are D + 1 parameters (i.e. weights) that need
to be learned in binary classification

® We showed that we can derive an expression for estimating the parameters for this
model using maximum likelihood estimation

® [tisasimple model, but can be very effective. Often it should be one of the first
models to try
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