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Naive Bayes Classification



Generative Classification
• In classification the goal is to a learn a function ŷ = f(x;θ)

◦ y ∈ {1, ....,C} is one of C classes (e.g. spam / ham, digits 0‑9)
◦ x = [x1, ..., xD]⊤ are the features (e.g. continuous or discrete)

• In probabilistic classification we choose the most probable class given an
observation

ŷ = argmax
c

p(y = c|x)

• We can use Bayes’s rule to convert the class prior and class‑conditionals to a
posterior probability for a class

p(y = c|x) = p(x|y = c)p(y = c)∑
c′ p(x|y = c′)p(y = c′) posterior =

likelihood × prior
evidence
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Generative Classification - Components

p(y = c|x) = p(x|y = c)p(y = c)
p(x)

• p(x|y = c): Likelihood
◦ Class conditional density for each class
◦ Describes how likely we are to see observation x for a given class

• p(y = c): Prior probability
◦ The prior for each class
◦ Encodes which classes are common and which are rare

• p(x): Evidence
◦ p(x) = ∑

c′ p(x|y = c′)p(y = c′)
◦ Normalises the probabilities across observations
◦ Does not impact which class is the most likely
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Representing the Class Conditional Density
• Representing the prior p(y) for each class is straight forward, i.e. we can compute

frequency of each class

• We need to choose a probabilistic model for our conditional density p(x|y)

• For example, for multivariate continuous data i.e. x ∈ RD, we can use the
multivariate Gaussian with parametersµc and 𝚺c

• However, this requires estimating D(D + 1)/2 parameters for each class covariance
matrix 𝚺c, which may be problematic as the dimensionality D gets large
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Naive Bayes Assumption

• Naive Bayes makes the simplifying assumption that the features are conditionally

independent given the class label

p(x|y) =
D∏

d=1
p(xd |y)

• Themodel is called “naive” since we do not expect the features to be independent,
even conditional on the class labels

• Even though this assumption is not typically true, Naive Bayes can still work well in
practice
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Independence
• Independencemeans that one variable does not affect another, A is (marginally)

independent of B if
p(A|B) = P(A)

• Which, from the definition of the conditional probability, is equivalent to saying

p(A,B) = P(A)P(B)

• A is conditionally independent of C given B if

p(A|C,B) = p(A|B)

i.e. once we know B, knowing C does not provide additional information about A
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Conditional Independence - Example
• The probabilities of going to the beach and having a heat stroke are not

independent, i.e.
p(B, S) > p(B)p(S)

• However, they may be independent if we know the weather is hot

p(B, S|H) = p(B|H)p(S|H)

• Hot weather “explains” all the dependence between the beach and heatstroke

• In classification, the class label explains all the dependence between the features
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Conditional Independence of Features - Example
• Suppose we had a feature vector x = [x1, x2, x3]⊺, we can write out the conditional

probability as

p(x|y) = p(x1, x2, x3 |y)

= p(x3 |x2, x1, y)p(x2, x1 |y)
= p(x3 |x2, x1, y)p(x2 |x1, y)p(x1 |y)

=
D∏

d=1
p(xd |xd−1, ..., x1, y)

• In Naive Bayes wemake the following simplifying assumption

p(x|y) =
D∏

d=1
p(xd |y)
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Naive Bayes with Binary Data



Spam Email Classification Example
• The task is to separate spam from ham (i.e. ‘not spam’) emails

• We have access to the following dataset containing six emails

id email status
1 “send us your password” spam
2 “send us review” ham
3 “review your account” ham
4 “review us” spam
5 “send your password” spam
6 “send us your account” spam

• We can fit a Naive Bayes classifier to this data so that we can classify new emails
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Representing Text Data
• We need to turn each email into a vector x

• We can simply use a binary feature xd ∈ {0, 1} to indicate if a specific word is present
or not

• For example, for a vocabulary with the following words:
{ ‘password’, ‘review’, ‘send’, ‘us’, ‘your’, ‘account’ }

The email containing the text “send us your password”would be encoded as
x = [1, 0, 1, 1, 1, 0]

• We can exclude common words, e.g. ‘a’, ‘the’, ...
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Representing Text Data
• Given the following vocabulary we can extract features from our data:

{ ‘password’, ‘review’, ‘send’, ‘us’, ‘your’, ‘account’ }
id email feature status
1 “send us your password” [1, 0, 1, 1, 1, 0] spam
2 “send us review” [0, 1, 1, 1, 0, 0] ham
3 “review your account” [0, 1, 0, 0, 1, 1] ham
4 “review us” [0, 1, 0, 1, 0, 0] spam
5 “send your password” [1, 0, 1, 0, 1, 0] spam
6 “send us your account” [0, 0, 1, 1, 1, 1] spam

 

 

 

 



Modelling Binary Features
• As the features are binary, i.e. xd ∈ {0, 1}, we can use the Bernoulli distribution to

represent the class condition density

p(x|y = c;θ) =
D∏

d=1
Ber(xd |𝜙dc)

• Here, 𝜙dc ∈ [0, 1] is the probability that xd = 1 when y is class c

Ber(xd |𝜃dc) = 𝜃xd
dc (1 − 𝜃dc) (1−xd )

• In the case of binary features, the maximum likelihood estimate is

𝜙MLE =
Ndc
Nc

i.e. the empirical fraction of times that feature d is present in examples from class c
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SpamClassification Example
id email status
1 “send us your password” s
2 “send us review” h
3 “review your account” h
4 “review us” s
5 “send your password” s
6 “send us your account” s

• Class priors:
p(spam) = 4/6 p(ham) = 2/6

• Per‑class likelihoods:
p(xd |spam) p(xd |ham) xd
2/4 0/2 password
1/4 2/2 review
3/4 1/2 send
3/4 1/2 us
3/4 1/2 your
1/4 1/2 account
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Classifying NewData - Spam Likelihood
• Given an new email we would like to be

able to classify it

• For example, given the test email:
“review us now”

• xt = [0, 1, 0, 1, 0, 0]⊺

• Class priors:
p(spam) = 4/6 p(ham) = 2/6

• Per‑class likelihoods:
p(xd |spam) p(xd |ham) xd
2/4 0/2 password
1/4 2/2 review
3/4 1/2 send
3/4 1/2 us
3/4 1/2 your
1/4 1/2 account

p(xt |spam) = p(0, 1, 0, 1, 0, 0|spam)

= (1 − 2
4 ) (

1
4 )(1 − 3

4 ) (
3
4 ) (1 − 3

4 )(1 − 1
4 ) = 0.004
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Classifying NewData - Ham Likelihood
• Given an new email we would like to be

able to classify it

• For example, given the test email:
“review us now”

• xt = [0, 1, 0, 1, 0, 0]⊺

• Class priors:
p(spam) = 4/6 p(ham) = 2/6

• Per‑class likelihoods:
p(xd |spam) p(xd |ham) xd
2/4 0/2 password
1/4 2/2 review
3/4 1/2 send
3/4 1/2 us
3/4 1/2 your
1/4 1/2 account

p(xt |ham) = p(0, 1, 0, 1, 0, 0|ham)

= (1 − 0
2 )(

2
2 )(1 − 1

2 ) (
1
2 )(1 − 1

2 )(1 − 1
2 ) = 0.0625
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Classifying NewData - Prediction
• From our Bayes classifier, we can obtain our posterior probability as

p(ham|xt) =
p(xt |ham)p(ham)

p(xt |ham)p(ham) + p(xt |spam)p(spam)

=
0.0625 × 2/6

0.004 × 4/6 + 0.0625 × 2/6
= 0.88

• Thus, according to our model, the probability that “review us now” is a ham email is
p(ham|xt) = 0.88
and by extension,
p(spam|xt) = 1 − 0.88
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ProblemsWith Naive Bayes
• Zero‑frequency problem

◦ e.g. any email containing the word “password” is spam
p(password|ham) = 0/2

◦ Solution: never allow zero probabilities
◦ Laplace smoothing: add a small positive number to all counts

p(xd |y) =
Ndc + 𝜖

Nc + 2𝜖
• Independence assumption

◦ Every feature contributes independently
◦ e.g. you can fool Naive Bayes by adding lots of ‘hammy’ words
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Missing Data
• Suppose we do not have the value for some feature xj?

◦ e.g. somemedical test was not performed on the patient
◦ How can we compute p(x1 = 1, ..., xj =?, ...xd |y)?

• This is easy with Naive Bayes
◦ We simply ignore the feature in any instance where the value ismissing

◦ We compute the likelihood based on observed features only

p(x|y) =
D∏

d=1
d≠j

p(xd |y)

◦ No need to ‘estimate‘ or explicitly model missing features
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Naive Bayes with Continuous Data



Continuous Feature Example - Task
• Task: Distinguish alpacas from llamas based on size

 

 

 

 

 

 



Continuous Feature Example - Data
• Task: Distinguish alpacas from llamas

◦ Classes: y ∈ {a, l}
◦ Features: height (cm) and weight (kg)
◦ Training examples: {(hn,wn, yn)}N

n=1
◦ Assume height and weight are independent
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Naive Bayes with Continuous Data
• In the case of real‑valued features, xd ∈ R, we can use the univariate Gaussian

distribution

p(x|y = c;θ) =
D∏

d=1
N(xd |𝜇dc, 𝜎

2
dc)

• Here 𝜇dc is themean of feature d when the class label is c and 𝜎2
dc is its variance

• This is equivalent to Gaussian discriminant analysis using diagonal covariance
matrices
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Continuous Feature Example -Model
• Task: Distinguish alpacas from llamas

◦ Classes: y ∈ {a, l}
◦ Features: height (cm) and weight (kg)
◦ Training examples: {(hn,wn, yn)}N

n=1
◦ Assume height and weight are independent

• Class priors: p(a) = Na/N and p(l) = Nl/N
• Class conditionals for alpacas:

◦ Height ∼ N(xh |𝜇ha, 𝜎
2
ha)

◦ Weight ∼ N(xw |𝜇wa, 𝜎2
wa)

• Class conditionals for llamas:
◦ Height ∼ N(xh |𝜇hl, 𝜎

2
hl)

◦ Weight ∼ N(xw |𝜇wl, 𝜎
2
wl)
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ProblemsWith Naive Bayes
• The conditional independence

assumption used by Naive
Bayes can fail to capture
relationships that may be
present in some datasets
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Summary
• We presented the Naive Bayes classifier

• It assumes that features are conditionally independent given the class

• This results in a reduction in the number of parameters we need to learn

• We can apply it to both discrete and continuous data

• This underlying assumption of Naive Bayes is a simplification that will not
necessarily work for all datasets
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