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Classification Overview

® |n supervised learning, we are tasked with predicting an output y, given an input
feature vector x

® For classification problems, the output space is a set of mutually exclusive ‘classes’
(also commonly referred to as ‘labels’)
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Binary versus Multiclass Classification

® |n binary classification we have two possibilities, e.g. dog versus cat. Thus,
ye{0,1},ye {1,2},ye {-1,+1}, ...

® |n multiclass classification we can have C'possible options, e.g. different breeds of
dog. Thus, y € {1, ..., C}, where C'is the number of classes of interest
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Example Classification Problems

® Spam filtering

® Determining the object presentin an image, i.e. image classification

Fraudulent transaction detection

Music genre classification

Medical diagnostic tests
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Example 1D Classification Problem

® We have collected a dataset containing the measurements of the petal lengths (in
cm) of plants from two different species: species A and species B

® Thus, we have a one dimensional (1D) continuous measurement z € R and a binary
class label y € {0, 1}
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Example 1D Classification Problem

® We have collected a dataset consisting of the measurements of the petal length (in
cm) of two different species of plants: species A and species B

® Thus, we have a one dimensional (1D) continuous measurement z € R and a binary
class label y € {0, 1}

® For species A, we have five measurements {1.8,2.1, 2.5, 3.2, 3.8} and for species B we
have three {5.8,6.7, 7.0}

® We can write our dataset D = {(z, y)}, =
{(1.8,0), (2.1,0), (2.5,0), (3.2,0), (3.8,0), (5.8, 1), (6.7, 1), (7.0, 1)}
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The Generative Approach

® Given a new observation z, can we predict which of the two classes it most likely
belongs to?

® To do this, one approach is to fit a model to our already observed data
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The Generative Approach

® Given a new observation z, can we predict which of the two classes it most likely
belongs to?

® To do this, one approach is to fit a model to our already observed data
® We can then use this model to make predictions about unobserved (i.e. new) data

® For continuous features, one obvious choice is the Gaussian distribution
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Univariate Gaussian Distribution

® The Gaussian (normal) distribution is a very widely used distribution for real-valued
random variables,i.e.z € R
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Univariate Gaussian Distribution

® The Gaussian (normal) distribution is a very widely used distribution for real-valued
random variables,i.e.z € R

® The probability density function of the Gaussian is defined as

N (alp 0®) =

1 2
2102 =P (_ﬁ(x_ #) )
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Univariate Gaussian Distribution

® The Gaussian (normal) distribution is a very widely used distribution for real-valued
random variables,i.e.z € R

® The probability density function of the Gaussian is defined as

1
N (2, 0%) = = exp (—ﬁ(flf—u)Q)

2o

® There are two parameters, the mean p which controls where the distribution is
centred and the variance o2 which controls how wide it is

N 1 N
Z 6% == D (= p)’
n=1 n=1

2 I
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Parameters of the Univariate Gaussian Distribution

® The mean y controls where the distribution is centred and the variance o2 controls
how wide it is
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Generative Classifier

® For binary classification, we begin by defining a model for each of our two classes

® We will make the assumption that, conditioned on the class, the data is Gaussian
distributed

@ informatics



Generative Classifier

® For binary classification, we begin by defining a model for each of our two classes

® We will make the assumption that, conditioned on the class, the data is Gaussian
distributed

® For data from class 0, we will assume that it is generated from
oy =0~ N(alpo, o5)

® For data from class 1, we will assume that it is generated from
aly =1~ N(alp, o7)
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Revisiting the 1D Example

® We can fit our two per-class Gaussians to our dataset
D ={(1.8,0), (2.1,0), (2.5,0), (3.2,0), (3.8,0), (5.8, 1), (6.7,1), (7.0, 1) }

6 informatics



Generative Classifier - Making Predictions

® Now that we have a model for each class, and assuming that we have estimated the
parameters for them (more on this later), we can use them to make predictions

® Foranew test datapoint x we can simply assign it to the class with the largest output

y = arg max N (|, 02)
©
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Generative Classifier - Making Predictions

® Now that we have a model for each class, and assuming that we have estimated the
parameters for them (more on this later), we can use them to make predictions

® Foranew test datapoint x we can simply assign it to the class with the largest output

y = arg max N (|, 02)
©

® \We may also want to know how ‘likely’ it is that a test datapoint is from a given class,

e.g. fromclass 1
N (alp, 07)

p1=
N (2lpo, o3) + N (21, oF)

where pp € [0, 1]
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Adding ‘Prior’ Knowledge

® |n many cases, we made have that is relevant to our classification
problem

® For example, we may have many more observations from one class than another
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Adding ‘Prior’ Knowledge

® |n many cases, we made have that is relevant to our classification
problem

® For example, we may have many more observations from one class than another

® We can encode this information as a weighting factor for each class, ¢ and ¢;, where
$1.¢0 € [0, 1]
® Inthebinarycase ¢y =1 — ¢g,i.e.do+¢1 =1
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Adding ‘Prior’ Knowledge

® |n many cases, we made have that is relevant to our classification
problem

® For example, we may have many more observations from one class than another

® We can encode this information as a weighting factor for each class, ¢ and ¢;, where
$1,¢0 € [0,1]

® |nthebinarycase¢; =1—¢p,i.e.dp+¢1 =1

® We can then combine this with the expression from the previous slide to obtain

B N (2, 07) 1
N (2o, 03)po + N (alps, o7) 1

A

P1
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Bayes Classifier
® We came up with the following expression for making predictions for new data

. N (a1, 02y
N (alpio, 2o + N (alpur, 2) b1

h1
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Bayes Classifier
® We came up with the following expression for making predictions for new data

. N (a1, 02y
N (alpio, 2o + N (alpur, 2) b1

h1

® |t turns out that this is just a restatement of Bayes’ rule
plaly=c)p(y=c) _ likelihood x prior
Soplaly= Dply=c) evidence

® Note, here we have omitted the dependence on the parameters for simplicity

p(y=clz) =
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Bayes’ Rule

® Bayes’ rule can be derived though application of the product rule, i.e.

p(z,y) = p(zly) p(y) = p(ylz)p(z)
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Bayes’ Rule

® Bayes’ rule can be derived though application of the product rule, i.e.
p(@ y) = p(aly)p(y) = p(ylz)p(z)

p(ylzy = 2HDPH)
p()
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Bayes’ Rule

® Bayes’ rule can be derived though application of the product rule, i.e.
p(@ y) = p(aly)p(y) = p(ylz)p(z)

p(ylzy = 2HDPH)
p()

® p(y|x) is the posterior distribution of y, conditioned on z

® p(x|y) is the likelihood of z, conditioned on y

® () isthe prior distribution over y, i.e. what we know about y before seeing any data

® p(z)isthe evidence, which can be computed by marginalising over the unknown y,
i.e. 2y, p(zly)p(y)
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c.1702-1761.

BAYES’ THEOREM

P(YIX) P(X)
P(X|Y) =
P(Y)
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Maximum Likelihood Estimation

® |n binary classification we have a set of Ny, pairs of observations, where
D = {(@n ya)}
® The process of learning the model parameters € from our dataset D is called model

fitting or training
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Maximum Likelihood Estimation

® |n binary classification we have a set of Ny, pairs of observations, where
D = {(@n ya)}

® The process of learning the model parameters € from our dataset D is called model
fitting or training

® One common approach for fitting a model to data, is called Maximum Likelihood
Estimation (MLE)

® Here we aim to find the parameters that assign the highest likelihood to our data
given our model, i.e. the ones that maximise the likelihood
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Maximum Likelihood Estimation
® |n binary classification we have a set of Ny, pairs of observations, where
D = {(2n, yn) 103

® The process of learning the model parameters € from our dataset D is called model
fitting or training

® One common approach for fitting a model to data, is called Maximum Likelihood
Estimation (MLE)

® Here we aim to find the parameters that assign the highest likelihood to our data
given our model, i.e. the ones that maximise the likelihood

OuLe = arg max p(D|6)
0
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Independence Assumption

® For convenience, we typically assume that the training data are independent and
identically sampled from the same distribution, i.e. the iid assumption

Ny
p(D10) = | | pan, yu: 0)
n=1
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Log Likelihood

® Taking the product of many terms can introduce numerical issues. To overcome this,
we take the log which will not impact where the maximum of the function is

LL(6) = log p(D|6)
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Log Likelihood

® Taking the product of many terms can introduce numerical issues. To overcome this,
we take the log which will not impact where the maximum of the function is

LL(6) = log p(D|6)

Nop
=log | | (s ;)
n=1

Ny
= Z log p(zp, Yn; 0)
n=1
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Log Likelihood

® Taking the product of many terms can introduce numerical issues. To overcome this,
we take the log which will not impact where the maximum of the function is

LL(O) = log p(D]0)

Nop
=log | | p(wn 423 0)
n=1

Ny
= " log p(z, 43 0)
n=1

® Recall that the log of a product equals the sum of the logs, i.e.
log(ab) = log(a) + log(b)
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Negative Log Likelihood

® Many optimisation algorithms are designed to minimise functions. We can instead
write the log likelihood (LL) as the Negative Log Likelihood (NLL)

Nop
NLL(8) = = > log p(si, yn; 6)
n=1
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Negative Log Likelihood

® Many optimisation algorithms are designed to minimise functions. We can instead
write the log likelihood (LL) as the Negative Log Likelihood (NLL)

Nop
NLL(8) = = > log p(si, yn; 6)
n=1

® Maximising the LL is equivalent to minimising the NLL

éMLE = arg min NLL(0)
0
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Negative Log Likelihood

® We can rewrite our expression for the NLL as

Nop
NLL(8) = = > 10g p(2n, Yn; 0)

n=1
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Negative Log Likelihood

® We can rewrite our expression for the NLL as

Nop
NLL(8) = = > 10g p(2n, Yn; 0)

n=1

Np
= — Z log [p(yn§ 01) p(zu|yn; 09)]
n=1
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Negative Log Likelihood

® We can rewrite our expression for the NLL as

Nop
NLL(O) = — Z log p(Zn, Yn; 0)

n=1

Np
= — Z log [p(yn§ 01) p(zu|yn; 09)]
n=1

Ny
Z log (| Yns 99)
n=1

Nop
> log p(yn; 6)
n=1

Bernoulli NLL of labels Guassian NLL of features
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Negative Log Likelihood
® We can rewrite our expression for the NLL as

Nop
NLL(O) = — Z log p(Zn, Yn; 0)

n=1

Np
= — Z log [p(yn§ 01) p(zu|yn; 09)]
n=1

Ny
Z log p(n|Yns 99)

n=1

Nop
Z 10g /)( Yns 91))
n=1

Bernoulli NLL of labels Guassian NLL of features

® These two terms depend on different sets of parameters 8 = {6, 6}, so they can be
optimised independently

4@ THE UNIVERSITY of EDINBURGH
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Bernoulli Distribution

® |n the case of the binary label data y € {0, 1}, we can use a Bernoulli prior
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Bernoulli Distribution

® |n the case of the binary label data y € {0, 1}, we can use a Bernoulli prior

® The probability mass function with the parameter ¢ of the Bernoulli is defined as

—¢ ify=0

1
Ber(yl$) = {¢ o
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Bernoulli Distribution

® |n the case of the binary label data y € {0, 1}, we can use a Bernoulli prior

® The probability mass function with the parameter ¢ of the Bernoulli is defined as

—¢ ify=0

1
Ber(yl$) = {¢ o

® We can rewrite this as

Ber(ylg) = ¢¥(1 - )™
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MLE for the Bernoulli Distribution

® We can compute the NLL for the Bernoulli with 8;, = {¢} as follows

Np
NLL(¢) = — Z log p(yn; 03)
n=1
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MLE for the Bernoulli Distribution

® We can compute the NLL for the Bernoulli with 8;, = {¢} as follows

Np
NLL(¢) = — Z log p(yn; 03)
n=1

Nop
= - log |¢¥(1 - ¢) 1

n=1
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MLE for the Bernoulli Distribution

® We can compute the NLL for the Bernoulli with 8;, = {¢} as follows

Np
NLL(¢) = — Z log p(yn; 03)
n=1

Nop
= - log |¢¥(1 - ¢) 1

n=1

= _Nl Iog(¢) - N() log(l - ¢)
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MLE for the Bernoulli Distribution

® We can compute the NLL for the Bernoulli with 8;, = {¢} as follows

Np
NLL(¢) = — Z log p(yn; 03)
n=1

Nop
= - log |¢¥(1 - ¢) 1

n=1

= _Nl Iog(¢) - N() log(l - ¢)

® The MLE can be found by solving a—aquLL(qS) =0
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MLE for the Bernoulli Distribution

® We can compute the NLL for the Bernoulli with 8;, = {¢} as follows

Np
NLL(¢) = — Z log p(yn; 03)
n=1

Nop
= - log |¢¥(1 - ¢) 1

n=1

= _Nl Iog(¢) - N() log(l - ¢)

® The MLE can be found by solving a—aquLL(qS) =0

® Which resultsin
M

No + Ny

é =
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Gaussian Likelihood

® For the Gaussian NLL we need to solve for the parameters 8, = {1, og,yl, of}, i.e.the
parameters for both Gaussians (one for each class)
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Gaussian Likelihood
® For the Gaussian NLL we need to solve for the parameters 8, = {1, og,yl, of}, i.e.the
parameters for both Gaussians (one for each class)

Ny
NLL(p0, 03 1, 67) = = > 10g p(nl 93 6)

n=1
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Gaussian Likelihood

® For the Gaussian NLL we need to solve for the parameters 8, = {1, og,yl, of}, i.e.the
parameters for both Gaussians (one for each class)

Ny
NLL(p0, 03 1, 67) = = > 10g p(nl 93 6)

n=1

Np
== ) Tog [N Gaalho, )0 N s, o)
n=1
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Gaussian Likelihood

® For the Gaussian NLL we need to solve for the parameters 8, = {1, og,yl, of}, i.e.the
parameters for both Gaussians (one for each class)

Ny
NLL(p0, 03 1, 67) = = > 10g p(nl 93 6)

n=1

Nop
= — Z lOg [N(«Tn|ﬂ0, o'g)(l-yﬂ)/\{(mnml, 0'12)(yn)]
n=1

Nop No
== > (1= yn) log[N (zulo, 60)] = ), yalog[N (zulpn, o7)]

n=1 n=1
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Splitting the Data

® For convenience we will split the data into two subsets Dy and D1, where Ny = | Dy
and N; = | D]
® Here, Dy C D is the subset of data where y,, = 0, and D, is the subset where y,, = 1

® We can then find the maximum likelihood estimate for each set separately
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Splitting the Data

® For convenience we will split the data into two subsets Dy and D1, where Ny = | Dy
and N; = | D]
® Here, Dy C D is the subset of data where y,, = 0, and D, is the subset where y,, = 1

® We can then find the maximum likelihood estimate for each set separately
® Qur expression for the Guassian NLL now becomes

NLL(8y) == > logN(zalpo,0f) = Y. log N(malps, o7)

anDO €D
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MLE for Univariate Gaussians

® Here, we will just focus on one of the Gaussians, i.e. the case where y,, =0

NLL(po, 03) = = > log N (zalpo, 07)

InEZ)Q
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MLE for Univariate Gaussians

® Here, we will just focus on one of the Gaussians, i.e. the case where y,, =0

NLL(po, 03) = = > log N (zalpo, 07)

InEZ)Q

=— Z log

1
€D 2 2
n 0 7'[0'0

1
exp (_ﬁ(xn - IJO)Z)

0
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MLE for Univariate Gaussians

® Here, we will just focus on one of the Gaussians, i.e. the case where y,, =0

NLL(po, 03) = = > log N (zalpo, 07)

InEZ)Q

=— Z log

1
€D 2 2
n 0 7'[0'0

1
exp (_ﬁ(xn - IJO)Z)

0
No No 9 (20 — p0)?
:—1 2 +—10 o5) + S —
- log(2m) + > log(a7) Z@ o
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MLE for Univariate Gaussians

® Here, we will just focus on one of the Gaussians, i.e. the case where y,, =0

NLL(po, 03) = = > log N (zalpo, 07)

InEZ)Q

=— Z log

1
€D 2 2
n 0 T[O'O

1
exp (_ﬁ(xn - ﬂo)Z)

0
No No 9 (20 — p0)?
:—1 2 +—10 o5) + S —
- log(2m) + > log(a7) Z@ o

® The minimum of the NLL must satisfy the following conditions
d

——NLL(go,02) =0
ao_g (IJO 0)

d
—NLL (g, 62) = 0,
IHo DR
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MLE Solution for Univariate Gaussians

® Solving for the MLE for both classes we get the following expressions for the means

,UAO:NiOme /i1=NiZ$n

mnEZ)o Tn€ D1
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MLE Solution for Univariate Gaussians

® Solving for the MLE for both classes we get the following expressions for the means

,UAO:Ninm /i1=NiZ$n

mnEZ)o 1 Z’,I,Eﬂl

® With the following for the variances

) 1 . | L
¥ = D, (@m—@) A= Y (w— )

$nEZ)0 1 T,nEZ)]
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Bringing it all Together

® We have solved for the parameters 6 = {¢, uo, og, Ui, af} of our model using MLE
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Bringing it all Together

® We have solved for the parameters 6 = {¢, uo, og, Ui, af} of our model using MLE

® Which we can use in our Bayes classifier

) plrly=1Dp(y=1)

=110 = = 0p(y=0) + p(aly = Dp(y= D)
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Bringing it all Together

® We have solved for the parameters 6 = {¢, uo, og, Ui, af} of our model using MLE

® Which we can use in our Bayes classifier

) plrly=1Dp(y=1)

=110 = = 0p(y=0) + p(aly = Dp(y= D)

® Which in the case of our binary classification model, is equivalent to

oy = 1]2) = N (2, 07)¢
N (alpo, 05) (1 = ¢) + N (alp1, o7) ¢
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Multivariate Classification




Multivariate Data

® Previously we discussed the case where the input feature was a one dimensional
continuous value,i.e.z€ R

® In practice, most datasets will be multivariate, i.e. € R”

® We need to define model for multivariate data

”‘c THE UNIVERSITY of EDINBURGH
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Multivariate Gaussian

® The probability density function (PDF) of the multivariate Gaussian is given by

1

N(@lw.2) = o o e

exp (—0.5(33— w)TE - u))

® Here, ;1 € R isthe mean vector and = € RP*P is the covariance matrix

® The univariate Gaussian is a special case of this PDF
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MLE for Multivariate Gaussian

® The maximum likelihood estimate of the mean vector is defined as

1 N
ﬂ:]_\/'zwn
n=1
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MLE for Multivariate Gaussian

® The maximum likelihood estimate of the mean vector is defined as
N
R 1
=23
N
n=1
® The maximum likelihood estimate of the covariance matrix is defined as

N
A 1 ) )
%= W;(mn— ) (@0~ )T
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Properties of the Covariance Matrix

® |tisasquare matrix (D x D) specifying the covariance between each pair of elements
of a given random vector

® |ntuitively, it generalises the notion of variance to multiple dimensions

® The main diagonal contains variances, i.e. the covariance of each dimension with
itself
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Properties of the Covariance Matrix

® |tisasquare matrix (D x D) specifying the covariance between each pair of elements
of a given random vector

® |ntuitively, it generalises the notion of variance to multiple dimensions

® The main diagonal contains variances, i.e. the covariance of each dimension with
itself

® The covariance matrix is symmetric,i.e. X = X7 and X! = (z7})7

® [tis positive semi-definite,i.e. 27Xz > 0and X la > 0

® The full covariance matric has D(D+1)/2 free parameters
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Types of Covariance Matrices
® There are three types of covariance matrix
® Here, we show some 2D examples

o> 0

0 o2 Zdiag =

z:spher =

@ informatics
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Types of Covariance Matrices

Spherical covariances Diagonal covariances Full covariances

T2

20 05 0.0 03 0.0
_ s-
k= {1.()] == [n.u u.r)] 0.0 1.\}

2.0 0.0

4.0 0.0
0.0 2.0 0.0 18

Simon Prince - Computer Vision Models (Book)
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Classification With Multivariate Gaussians

® \We can use the same generative classification model as before

p(xly=c)p(y = ¢
2o p(xly=)ply= 7<)

® |n the multivariate case, we use a multivariate Gaussian for the class conditional

p(y = clx) =

density
p(xly = c) = N(alpe Zc)
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Gaussian Discriminant Analysis - 2D Example

® |n this example we have two dimensional data from two different classes, blue and

red
6 1 (X ) PY °
°
.
@ 4 00 °
° L
4 o o
x oo o °°
[ [ ]
X @ P
2 ° ¢
X
x X
X X
X X X %
0 X B x xX
X
X X < X x
X x B
2
X
X
4
T
-4 -2 0 2 4 6
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Gaussian Discriminant Analysis - 2D Example

® Here we visualise the underlying Gaussian distributions that generated the observed
data
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Quadratic Discriminant Analysis - 2D Example

® |f we estimate a separate covariance matrix for each class (i.e. Xy and %) and fit our
classifier we get a quadratic decision boundary

:c\‘ - THE UNIVERSITY of EDINBURGH T T ! ! T T
i ) = . -4 -2 0 2 4 6
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Linear Discriminant Analysis - 2D Example

o [finstead, we assume that both classes share the same covariance matrix (i.e.
Yo = %1) and fit our classifier we get a linear decision boundary

QBB THE UNIVERSITY of EDINBURGH T T T T . ,
i i -4 -2 0 2 4 6
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Multiclass Classification

® We can apply the same model in the multiclass case, i.e. where y € {1, ..., C} and
C' > 2, by simply defining a class conditional model p(z|y = ¢) for each class

6 o0 ° ° ‘.
° °® L]
o e O © ' u
°
° ° l-.' " l|l
4 [ ) ..
° ® X L]
® -
L P [ ] | L [ |
e o [ D ]
2 ° ¢ "
X
x X
X X
X x X><>O< X
0 X x xX
X
X
X X < X X
X x %
2
X
X
_4
T
-4 -2 0 2 4 6
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Multiclass Classification

® We can apply the same model in the multiclass case, i.e. where y € {1, ..., C} and
C' > 2, by simply defining a class conditional model p(z|y = ¢) for each class

QBB THE UNIVERSITY of EDINBURGH T T T T T -
W i i -4 -2 0 2 4 6
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Summary

® We introduced the problem of supervised classification

® We showed that simple Guassian based models can be used for classification with
continuous data through the application of Bayes’ rule

® The parameters of these models are estimated using maximum likelihood estimation

® These models can be used for both single or vector input data and for binary or
multiclass outputs

b, THE UNIVERSITY of EDINBURGH
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