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Classification Overview Binary versus Multiclass Classification

® |n binary classification we have two possibilities, e.g. dog versus cat. Thus,
ye{0,1},ye {1,2}, y € {-1,+1},...

® |n multiclass classification we can have C'possible options, e.g. different breeds of
dog. Thus, y € {1, ..., C}, where C'is the number of classes of interest

® |nsupervised learning, we are tasked with predicting an output ¥, given an input
feature vector x

® For classification problems, the output space is a set of mutually exclusive ‘classes’
(also commonly referred to as ‘labels’)
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Example Classification Problems

Spam filtering

Determining the object present in an image, i.e. image classification
Fraudulent transaction detection

Music genre classification

Medical diagnostic tests
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Example 1D Classification Problem

We have collected a dataset consisting of the measurements of the petal length (in
cm) of two different species of plants: species A and species B

Thus, we have a one dimensional (1D) continuous measurement x € R and a binary
class label y € {0, 1}

For species A, we have five measurements {1.8, 2.1, 2.5, 3.2, 3.8} and for species B we
have three {5.8,6.7,7.0}

We can write our dataset D = {(z, yn)}V, =

{(1.8,0), (2.1,0), (2.5,0), (3.2,0), (3.8,0), (5.8,1), (6.7, 1), (7.0, 1)}
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Example 1D Classification Problem

® We have collected a dataset containing the measurements of the petal lengths (in
cm) of plants from two different species: species A and species B

® Thus, we have a one dimensional (1D) continuous measurement z € R and a binary
class label y € {0, 1}
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The Generative Approach

® Given a new observation z, can we predict which of the two classes it most likely
belongs to?

® To do this, one approach is to fit a model to our already observed data
® \We can then use this model to make predictions about unobserved (i.e. new) data

® For continuous features, one obvious choice is the Gaussian distribution
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Univariate Gaussian Distribution

® The Gaussian (normal) distribution is a very widely used distribution for real-valued
random variables,i.e. z € R

® The probability density function of the Gaussian is defined as

N (alp, 0®) = = exp (—%(I—u)z)

2o

® There are two parameters, the mean p which controls where the distribution is
centred and the variance o which controls how wide it is
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Generative Classifier

® For binary classification, we begin by defining a model for each of our two classes

® We will make the assumption that, conditioned on the class, the data is Gaussian
distributed

® For data from class 0, we will assume that it is generated from
aly =0~ N(alpo, of

® Fordata from class 1, we will assume that it is generated from
aly=1~ N(alu, o7)
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Parameters of the Univariate Gaussian Distribution

® The mean ;i controls where the distribution is centred and the variance o2 controls
how wide it is
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Revisiting the 1D Example

® We can fit our two per-class Gaussians to our dataset
D ={(1.8,0),(2.1,0), (2.5,0), (3.2,0), (3.8,0), (5.8,1), (6.7, 1), (7.0, 1) }
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Generative Classifier - Making Predictions Adding ‘Prior’ Knowledge

® Now that we have a model for each class, and assuming that we have estimated the ® |n many cases, we made have that is relevant to our classification
parameters for them (more on this later), we can use them to make predictions problem
® For a new test datapoint xwe can simply assign it to the class with the largest output ® For example, we may have many more observations from one class than another

® \We can encode this information as a weighting factor for each class, ¢o and ¢1, where
$1.¢0 € [0,1]
® Inthebinarycase¢; =1—¢p,i.e.do+ @1 =1

= arg max N (2|, 03)
c

® We may also want to know how ‘likely’ it is that a test datapoint is from a given class, ® \We can then combine this with the expression from the previous slide to obtain
e.g.fromclass 1 9
N (alm, o) B Nl 07)61
= 1= 2 2
T NGalio, a3) + N (alpn, o) N (alpo, 25)o + Nal, 0161

where p; € [0,1]
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Bayes Classifier Bayes’ Rule
® We came up with the following expression for making predictions for new data ® Bayes’ rule can be derived though application of the product rule, i.e.
N (alp1, 62) ¢ p(zy) = p(aly)p(y) = p(yla)p(2)

p =
YT N (alpo, a2 o + N (als, o) p(zly)

p(ylz) = @

® |t turns out that this is just a restatement of Bayes’ rule
® p(y|x) is the posterior distribution of y, conditioned on z

p(zly = ¢) likelihood x _ o iy
p(y=clz) = = - ® p(z|y) is the likelihood of z, conditioned on y
2o plrly=)ply=¢) evidence , N . .
' ‘ ‘ ® p(y)isthe distribution over y, i.e. what we know about y before seeing any data
® Note, here we have omitted the dependence on the parameters for simplicity ® p(z) isthe evidence, which can be computed by marginalising over the unknown ,

i.e. 2, p(aly)p(y)
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IN HONOUR OF

THOMAS BAYES FRS a1 Maximum Likelihood Estimation

c.1702-1761.

BAYES’ THEOREM
P(Y|X) P(X)
P(Y)

P(X]Y) =

Maximum Likelihood Estimation Independence Assumption
® |n binary classification we have a set of Ny pairs of observations, where ® For convenience, we typically assume that the training data are independent and
D = {(z,, yn)}gﬁ identically sampled from the same distribution, i.e. the iid assumption
® The process of learning the model parameters € from our dataset D is called model Nop
fitting or training p(D|0) = 1_[ (T, Y3 0)
n=1

® One common approach for fitting a model to data, is called Maximum Likelihood
Estimation (MLE)

® Here we aim to find the parameters that assign the highest likelihood to our data
given our model, i.e. the ones that maximise the likelihood

Ouie = arg max p(D|6)
)
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Log Likelihood Negative Log Likelihood

® Taking the product of many terms can introduce numerical issues. To overcome this, ® Many optimisation algorithms are designed to minimise functions. We can instead
we take the log which will not impact where the maximum of the function is write the log likelihood (LL) as the Negative Log Likelihood (NLL)
LL(@) =log p(D|6) Nop
o NLL(9) = — )" log p(z:, :0)
=1
=log | | Pt 4::6) "
n=1

® Maximising the LL is equivalent to minimising the NLL

Ny
= Z log p( 2, Yn; 0) . )
n=1 Ouie = argmin NLL(6)
0

® Recall that the log of a product equals the sum of the logs, i.e.
log(ab) = log(a) + log(b)
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Negative Log Likelihood Bernoulli Distribution
® We can rewrite our expression for the NLL as ® In the case of the binary label data y € {0, 1}, we can use a Bernoulli prior
Np ® The probability mass function with the parameter ¢ of the Bernoulli is defined as
NLL(B) = - > 1og p(zn, ya; 6)
n=1 .
1- ify=0
Ny Ber(sl¢) ={ oo
= _Zlog[p(yn; 05) p(xp| Yn; og)] ¢ ify=1
n=1
il (il 0.) ® We can rewrite this as
= - og p(p|yn; O, _
£y OB PRI Ber(ylg) = ¢(1~ ¢)
Guassian NLL of features
® These two terms depend on different sets of parameters 8 = {6, 0}, so they can be
optimised independently
20
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MLE for the Bernoulli Distribution Gaussian Likelihood

® We can compute the NLL for the Bernoulli with 6, = {¢} as follows ® For the Gaussian NLL we need to solve for the parameters 6, = {19, 02,111, 07}, i.e. the
Np parameters for both Gaussians (one for each class)
NLL(¢) = = >, log p(yn; 6)
Ng
n=1 2 2
Ny NLL(/J(L 0> /11701) = _Zlogp(:E’VLlyTL; Bg)
- _ Zlog [¢yn,(1 — ¢)-wn) n=1
! - % Log | N (zlpo, o) 1N (anlyn, o) |
= — Ny log(¢) — Nolog(1 - ¢) £, 08X LEHO % miL 01
Nop Nop
® The MLE can be found by solving %NLL((]&) =0 =- Z(l — yn) log [N(xn|/10, ag)] - Z yn log [N(xnlyl, 012)]
e Which results in n=1 n=1
. N
$=
0+ M
& informatics 2 & informatics
Splitting the Data MLE for Univariate Gaussians

® For convenience we will split the data into two subsets Dy and D, where Ny = |Dy| ® Here, we will just focus on one of the Gaussians, i.e. the case where y,, = 0

and Ny = D1 NLL(po, 03) = = > log N (zalpto, o3)
® Here, Dy C D isthe subset of data where y,, = 0, and D; is the subset where 3, = 1 €00

® \We can then find the maximum likelihood estimate for each set separately

1 1
=- Z log exp (—2—2(% - ﬂ0)2)
2,€Dy 1/2%08 %

® Qur expression for the Guassian NLL now becomes
(In - [1(])2
2
200

No Ny 9
: = —log(2n) + —1 +

NLL(Bg) == > log N(luo,a3) = > log N(zlp1, o7) 5~ log(2m) + =~ log(o7) 22])
7,€Do €D n€do
® The minimum of the NLL must satisfy the following conditions

9 17}
—NLL(pp,03) =0,  —NLL(po,05) =0
E (o O) (90'3 (ko 0)
24 & informatics
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MLE Solution for Univariate Gaussians Bringing it all Together
® Solving for the MLE for both classes we get the following expressions for the means ® We have solved for the parameters 8 = {¢, yo, ag, 11, af} of our model using MLE

1 ® Which we can use in our Bayes classifier

jo = — Z T 1 =— Z Tn
Mo, M, oy = 1l2) = plaly = Dp(y =1)
p(zly=0)p(y=0)+p(zly=Dp(y=1)

® With the following for the variances
W= 3 ol A= Y (i)’
0 = No n — HO) > 1 = N, In — H1
z,e Dy €Dy N (2 p, 012)45
p(y = 1fz) =
N (alpo, o3) (1 = ) + N (alp1, 07) ¢

® Which in the case of our binary classification model, is equivalent to
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Multivariate Data

® Previously we discussed the case where the input feature was a one dimensional
continuous value,i.e.z € R
® In practice, most datasets will be multivariate, i.e. € R”

® We need to define model for multivariate data

Multivariate Classification
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Multivariate Gaussian MLE for Multivariate Gaussian

® The probability density function (PDF) of the multivariate Gaussian is given by e The maximum likelihood estimate of the mean vector is defined as
N
1 R 1
== ) @
N(zlp,X) = ex (—0.5 z— )T (x- ) i Z "
(zlp, %) DB P (z— )= (z-p) N4

® Here, i € R” isthe mean vector and = € RP*? is the covariance matrix
® The maximum likelihood estimate of the covariance matrix is defined as

® The univariate Gaussian is a special case of this PDF

N
A 1 R .
5= N;m ~ ) (@~ )T
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Properties of the Covariance Matrix Types of Covariance Matrices
® |tisasquare matrix (D x D) specifying the covariance between each pair of elements ® There are three types of covariance matrix
of a given random vector
® Here, we show some 2D examples
® |ntuitively, it generalises the notion of variance to multiple dimensions
® The main diagonal contains variances, i.e. the covariance of each dimension with ¥ a2 0 0'12 0 > 0'%1 0'122
itself spher = 9 diag = 9 full = | o 9
0 o 0 o 0y Oy
® The covariance matrix is symmetric,i.e. X = X7 and X! = (z71)T
® ltis positive semi-definite,i.e. 27Xz > 0Oand 272 x> 0
® The full covariance matric has D(D+1)/2 free parameters
31 32
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Types of Covariance Matrices

Spherical covariances Diagonal covariances Full covariances

T2

Simon Prince - Computer Vision Models (Book)
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Gaussian Discriminant Analysis - 2D Example

® |n this example we have two dimensional data from two different classes, blue and

red
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Classification With Multivariate Gaussians

® \We can use the same generative classification model as before

p(zly=o)p(y = ¢
2o p(xly=<)ply= <)

® |n the multivariate case, we use a multivariate Gaussian for the class conditional

p(y=clz) =

density
p(aly=c) = N(xlpeXc)
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Gaussian Discriminant Analysis - 2D Example
® Here we visualise the underlying Gaussian distributions that generated the observed
data
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Quadratic Discriminant Analysis - 2D Example Linear Discriminant Analysis - 2D Example

® |f instead, we assume that both classes share the same covariance matrix (i.e.
Yo = X1) and fit our classifier we get a linear decision boundary

® |f we estimate a separate covariance matrix for each class (i.e. Xy and %) and fit our
classifier we get a quadratic decision boundary
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Multiclass Classification

® \We can apply the same model in the multiclass case, i.e. where y € {1, ..., C} and
C > 2, by simply defining a class conditional model p(x|y = ¢) for each class

37
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Multiclass Classification

® We can apply the same model in the multiclass case, i.e. where y € {1, ..., C} and
C'> 2, by simply defining a class conditional model p(x|y = ¢) for each class
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Summary

® We introduced the problem of supervised classification

® We showed that simple Guassian based models can be used for classification with
continuous data through the application of Bayes’ rule

® The parameters of these models are estimated using maximum likelihood estimation

® These models can be used for both single or vector input data and for binary or
multiclass outputs

41




	Classification
	Maximum Likelihood Estimation
	Multivariate Classification

